
Markov Decision Processes and How to Solve Them

Rui-Yang Zhang

This is a stand-alone notes on the Markov decision process and its solution methods - policy iteration and value
iteration - that was originally used to supplement my talk at the Lancaster AI reading group in January 2025. Two
key references used when preparing this notes are the RL short course by Chengchun Shi as well as the introductory
RL book of Murphy (2024).

1 Markov Decision Processes

The Markov decision process (MDP) is a commonly used model in sequential decision-making (e.g. reinforcement
learning). An MDP investigates the interactions between an agent and an environment, where at time t, the agent
does action at ∈ A following some policy π and the environment provides feedback of reward rt.

Agent Environment

action at

reward rt

The environment has some internal status at time t, captured by state st ∈ S , and its status changes to st+1
after receiving the action at from the agent and the change is modelled stochastically via transition probability
pS(st+1|st, at). Subsequently, the environment provides stochastic feedback to the agent via reward probability
pR(rt|st, at, st+1). Several assumptions are made here. First, we assume the transition is Markovian, so the probability
of the new state st+1 only depends on the current state st and action at. Second, we assume the reward is instantly
fully observed. Third, the probabilities pS and pR are time-homogeneous and have no direct time dependency. These
assumptions are fundamental to an MDP1.

rt−1 rt rt+1

st−1 st st+1

at−1 at at+1

Additionally, subsequent discussions in this notes will always assume we know the full world model (i.e. transi-
tion pS and reward pR). We would also assume the state space S and action space A are finite.

The goal of solving an MDP is to find the optimal policy π∗ that yields the highest reward when interacting with
the environment over time (either for a finite time horizon or till infinity). We wish to quantify the quality of a policy,
and first, we need to summarise the reward. We define:

R(st, at, st+1) := EpR [rt] = ∑
r

rpR(r|st, at, st+1)

Rt := R(st, at) := ESt+1∼pS [R(st, at, St+1)] = ∑
s

R(st, at, s)pS(s|st, at)

1If the rewards are only partially observed, in the sense that some filtering needs to be included to estimate the true reward, then we would
have the partially observed MDP (POMDP). Also, if the time-homogeneity is broken, we would have the time-varying MDP.

1

https://github.com/callmespring/RL-short-course

The quality of a policy π that is initialised at state s can be captured using the value function, defined as

Vπ(s) := Eπ

[
∞

∑
t=0

γtRt(st, at) |s0 = s

]
where γ ∈ (0, 1) is the discount factor. The inclusion of a discount factor has two immediate reasons: (1) to avoid
infinities in the sum, (2) to mimic the general tendency of preferring a reward of fixed value sooner. Closely linked
to the value function is the action-value function, also known as the Q-function, defined as

Qπ(s, a) := Eπ

[
∞

∑
t=0

γtRt(st, at) |s0 = s, a0 = a

]
.

The value function and the Q-function are directly linked, as we have

Vπ(s) = Ea∼π(a|s)[Qπ(s, a)]

Qπ(s, a) = Est+1∼pS(s|st ,at)[Rt(s, a) + γVπ(st+1)|st = s, at = a]

which follow directly from their respective definitions. This conversion will be frequently used in the rest of this
notes.

1.1 GridWorld

The recurring example that we will use in this notes is the GridWorld problem. The environment where our agent
is acting is a square grid of size s× s. In each of the s× s cells, the agent has four possible actions: move up, down,
left, right by one unit. When a move is not possible, for example the agent is at the top-right corner of the grid and
it cannot move further top/right, it has a smaller set of possible actions to choose from. Finally, upon visiting a cell,
the agent will obtain a cell-specific reward that could be positive or negative.

To summarise, the state space is
S = {1, 2, . . . , s} × {1, 2, . . . , s}

and the action space is
A = {‘up’, ‘down’, ‘left’, ‘right’}.

The reward is deterministic and cell-specific. See Figure 1 for an example of a 3× 3 GridWorld. We will use a discount
factor γ = 0.5 for the computations we do - an arbitrary choice.

Figure 1: 3× 3 GridWorld with Rewards

What we have used above is an extremely simple version of GridWorld. We can easily include roadblocks (cells
that are unreachable) and terminating locations to turn the problem into a route-finding/maze-solving problem by
having a −1 reward on all but terminating cells and a positive reward for the terminating cell. Many other possibili-
ties exist.

The GridWorld problem can be thought of as a simplification of many real-world reinforcement learning tasks.
For example, the agent could be a drone and the environment is some landscape we wish to survey.

2

1.2 Banach Fixed Point Theorem

One key result that will be repeatedly used below is the Banach fixed point theorem, which we will state below.

Theorem 1.1 (Banach Fixed Point Theorem). Let (X, d) be a non-empty complete metric space with a contraction mapping
T : X → X, i.e. there exists a q ∈ [0, 1) such that

d(T(x), T(y)) ≤ qd(x, y)

for all x, y ∈ X. In such cases, T admits a unique fixed point x∗ ∈ X such that T(x∗) = x∗.
Furthermore, if we define {xn}n∈N where xn+1 = T(xn), then for any x0 ∈ X we have

lim
n→∞

xn = x∗.

2 Bellman Equation and Optimality

Bellman equations are fundamental equations related to an MDP. First, we will derive the Bellman optimality
equations for the optimal policy π∗. Then we will use that to prove the existence of an optimal policy π∗. Finally, we
will establish the Bellman equations for any policy π.

2.1 Bellman Optimality Equation

For an optimal policy π∗ of an MDP, we have the following Bellman optimality equations that recursively define the
value and Q-functions of π∗:

V∗(s) = max
a

R(s, a) + γEpS(s′ |s,a)[V∗(s
′)]

Q∗(s, a) = R(s, a) + γEpS(s′ |s,a)[max
a′

Q∗(s′, a′)]

for all s ∈ S , a ∈ A. These allow us to solve for V∗ and Q∗ as systems of linear equations subject to knowing all the R
and pS, of course. Since we could obtain Q∗ from V∗, we will only look at the value functions here.

By definition, the optimal policy π∗ is the policy that yields the largest value function, i.e.

V∗(s) = max
{at}∞

t=0

∞

∑
t=0

γtR(st, at)

where {st}∞
t=0 with s0 = s are generated using pS. Using this equation, we have

V∗(s) = max
{at}∞

t=0

∞

∑
t=0

γtR(st, at)

= R(s, a∗0) + max
{at}∞

t=1

∞

∑
t=0

γtR(st, at)

= R(s, a∗0) + γ max
{at}∞

t=1

∞

∑
t=1

γt−1R(st, at)

= R(s, a∗0) + γEs1∼pS(s′ |s,a0)
[V∗(s′)]

as required for the Bellman optimality equation for the value function.
A similar derivation can be used to obtain the Bellman optimality equation for the Q-function.
One could obtain an optimal (greedy) policy from V∗ and Q∗. Given V∗ and/or Q∗, an greedy optimal policy π∗

is given as
π∗(s) = argmax

a
Q∗(s, a) = argmax

a

(
R(s, a) + γEpS(s′ |s,a)[V∗(s)]

)
.

Note that the optimal policy may not be unique. Multiple optimal policies would exist and lead to different actions,
however, they would all have the same value function V∗.

3

2.2 Existence of Optimal Policy

For an MDP with discrete state space S and action space A as well as bounded reward, there exists an optimal
stationary2 policy π∗.

The above result can be proved using the Banach fixed point theorem and the Bellman optimal equation of the
value function. We define the Bellman backup operator B such that

B ◦V(s) := max
a

R(s, a) + γEpS(s′ |s,a)[V∗(s
′)] = V(s) (1)

where the second equality is the Bellman optimality equation. If we can show a fixed point exists for the operator B,
we could show that there exists at least an optimal policy. The Banach fixed point theorem provides a tool to establish
such fixed point existence, as long as we can show that B is a contraction.

Proposition 2.1. The Bellman backup operator B is a contraction for γ < 1.

Proof. Consider the infimum norm ∥V∥∞ := sups |V(s)|. For any V1, V2, we have

∥B ◦V1 −B ◦V2∥∞ = sup
s
|B ◦V1(s)−B ◦V2(s)|

= sup
s
|max

a
γEpS(s′ |s,a)[V1(s′)]−max

a
γEpS(s′ |s,a)[V2(s′)]

≤ γ max
a

sup
s
|EpS(s′ |s,a)[V1(s′)]−EpS(s′ |s,a)[V2(s′)]

= γ max
a ∑

s′
pS(s′|s, a) sup

s
|V1(s′)−V2(s′)|

≤ γ∥V1 −V2∥∞

which is a contraction when γ < 1, as desired.

2.3 Bellman Equation

A Bellman equation exists for any policy π, given by

Vπ(s) = Eπ [R(s, a) + γVπ(s1)|s0 = s]

where the action a is chosen following the policy π.
The above equation can be derived simply. We have

Vπ(s) = Eπ

[
∞

∑
t=0

γtR(st, at)

∣∣∣∣S0 = s

]

= Eπ [R(s, a)] + γEπ

[
∞

∑
t=1

γt−1R(st, at)

∣∣∣∣S0 = s

]

= Eπ [R(s, a)] + γEπ

[
Eπ

[
∞

∑
t=1

γt−1R(st, at)|S1, S0

] ∣∣∣∣S0 = s

]

= Eπ [R(s, a)] + γEπ

[
Eπ

[
∞

∑
t=1

γt−1R(st, at)|S1

] ∣∣∣∣S0 = s

]
= Eπ [R(s, a)] + γEπ [Vπ(S1)|S0 = s]
= Eπ [R(s, a) + γVπ(S1)|S0 = s]

as desired.
2same policy is applied for all t

4

We can also express the Bellman equation Vπ in matrix form

Vπ = R+ γPVπ

where it is fully written out as
Vπ(1)
Vπ(2)

...
Vπ(n)

 =


∑a π(a|1)R(1, a)
∑a π(a|2)R(2, a)

...
∑a π(a|n)R(n, a)

+ γ


P11 · · · P1n
P21 · · · P2n

...
. . .

...
Pn1 · · · Pnn




Vπ(1)
Vπ(2)

...
Vπ(n)


where n = |S|, Pij = ∑a π(a|i)P a

ij, and P a
ij = P[st+1 = s′|st = s, at = a].

Simple linear algebra manipulation will give us

Vπ = (1− γP)−1R

assuming the inconvertibility of 1− γP . Since P is an |S| × |S|matrix, the above computation is of time complexity
O(|S|3).

Alternatively, one could also find V∗ iteratively from any starting point V0 and repetitively applying

Vk+1 ← R+ γPVk

for k = 0, 1, 2, . . . - the Newton iteration method. This approach has time complexity O(k|S|2) where k is the number
of iterations needed till convergence (up to a sufficient degree). For large |S|, the iterative approach is more desirable,
and it can leverage parallel computing speed up as it only has matrix multiplications and additions - as opposed to
the matrix inverse of the direct approach.

Figure 2: Computational Time Comparison of GridWorld’s Value Function with varying sizes s using Direct Solver
and Iterative Solver.

From Figure 2 where a computational time comparison of calculating the value functions of the GridWorld exam-
ple with varying sizes using the two solution methods is shown, one can notice the two methods’ respective scaling
as well as the advantage of iterative solver for larger sizes.

3 Policy Iteration and Value Iteration

Two common approaches to solving an MDP are policy iteration and value iteration, which we will describe below.

3.1 Policy Iteration

The policy iteration method consists of iteratively applying (1) policy evaluation and (2) policy improvement. Start-
ing from an arbitrary policy π, we first evaluate its value Vπ using methods described in Section 2.3, then we use

5

Vπ to give us an improved policy π′. This two-step procedure is repeated until we reach convergence, i.e. the new
policy π′ agrees with π for all state s ∈ S .

A policy π can be improved using its value function Vπ , and in particular the Q-function Qπ which we can obtain
from Vπ using the relationship

Qπ(s, a) = Eπ [R(s, a) + γVπ(st+1)|st = s, at = a].

The new policy π′ is defined by π′(s) := argmaxa Qπ(s, a).

Theorem 3.1 (Policy Improvement Theorem). The improved policy π′ has no smaller value function than π, i.e. Vπ′(s) ≥
Vπ ∀s ∈ S .

Proof. This can be established using induction. We let π0 := π, π1 be the policy that makes the first move using
argmaxa Qπ(s, a) and the rest using π, and πk be the policy that makes the first k moves using Qπ . We would also let
π∞ := π′.

First, we can show that π1(s) ≥ π0(s) for s ∈ S . Notice that,

Qπ(s, π′(s)) = max
a

Qπ(s, a) ≥∑
a

π(a|s)Qπ(s, a) = Vπ(s)

and π1 is no worse than π0.
Subsequently, we have

Vπk+1(s) −Vπk (s) = γkEπ′ [Qπ(sk, π′(sk)|s0 = s]− γkEπ′ [Vπ(sk)|s0 = s] ≥ 0

using a similar argument as above.
Thus, we can finish the proof using induction.

The method of policy iteration is slow. For each iteration, we need to evaluate the policy, which is O(k1|S|2) when
we do it iteratively, and improve the policy, which is O(|A| × |S|2). So, if k is used to denote the number of policy
iterations, the overall method has time complexity of O(k(k1|S|2 + |A| × |S|2))

3.2 Value Iteration

Value iteration is simple - we find V∗, then define an optimal policy π∗ using it.
Recall that V∗ = B ◦V∗ where B is the Bellman backup operator we defined earlier as (1). We can start from some

V0 and apply iteratively B to it until convergence to obtain V∗. This can be justified as B is a contraction, as proved
in Proposition 2.1. An example of this convergence is also shown in Figure 3.

Finally, one could obtain an optimal (greedy) policy from V∗ and Q∗. Given V∗ and/or Q∗, an greedy optimal
policy π∗ is given as

π∗(s) = argmax
a

Q∗(s, a) = argmax
a

(
R(s, a) + γEpS(s′ |s,a)[V∗(s)]

)
.

Thus, the time complexity of value iteration is O(k · |S|2 × |A|) since the one-off policy finding is negligible
compared to the main value iteration.

3.3 Solving GridWorld

Returning to the GridWorld example that we outlined in Section 1.1, we will use the methods we have outlined to
find an optimal policy of it.

Considering a simple 3× 3 example with randomly generated rewards, shown in Figure 1, we apply three meth-
ods of solving MDP: direct solution via Bellman optimality equation (Section 2.1), value iteration (Section 3.2), and
policy iteration (Section 3.1. Their respective optimal value functions obtained are presented below directly from the
code output. The minor discrepancies between the approximate solutions and the direct solution is mostly due to
numerical rounding-offs and the choice of tolerance level for iterative solvers.

6

Figure 3: Value Iteration of GridWorld. L2 distance to optimal value function (obtained from direct solve) over the
number of iterations.

Optimal Value Function (Direct Solution):
[[5.6010101 7.65656566 4.78282828]
[6.74747475 5.55555556 7.47474747]
[5.32828283 6.56565657 4.51010101]]

Optimal Value Function (Value Iteration):
[[5.33333302 7.3333329 4.66666639]
[6.66666627 5.33333302 7.3333329]
[5.33333302 6.66666627 4.66666639]]

Optimal Value Function (Policy Iteration):
[[5.33333325 7.33333329 4.66666658]
[6.66666651 5.33333325 7.33333329]
[5.33333325 6.66666651 4.66666658]]

Subsequently, one could use an optimal value function to find an optimal policy using the Q-function. This extra
step is not needed for policy iteration as that method directly looks for the policy. The policies obtained are presented
below. Notice that they are identical.

Optimal Policy (Direct Solution):
[[’down’ ’right’ ’down’]
[’down’ ’left’ ’up’]
[’up’ ’left’ ’up’]]

Optimal Policy (Value Iteration):
[[’down’ ’right’ ’down’]
[’down’ ’left’ ’up’]
[’up’ ’left’ ’up’]]

Optimal Policy (Policy Iteration):
[[’down’ ’right’ ’down’]
[’down’ ’left’ ’up’]
[’up’ ’left’ ’up’]]

References

Murphy, K. (2024). Reinforcement learning: An overview, arXiv preprint arXiv:2412.05265 .

7

	Markov Decision Processes
	GridWorld
	Banach Fixed Point Theorem

	Bellman Equation and Optimality
	Bellman Optimality Equation
	Existence of Optimal Policy
	Bellman Equation

	Policy Iteration and Value Iteration
	Policy Iteration
	Value Iteration
	Solving GridWorld

