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Preface

This notes is of expository nature, and describes the basics of the multiple testing problem. The
multiple testing problem arises when we are conducting a large number of hypothesis testing on
the same set of data. This is a frequently appearing problem in scientific research and real life
scenarios, for example for genetic research (GWAS) and web design (AB testing). This set of
notes is not original, and citations have been included (as much as possible) when necessary.

The notes was prepared while the author was working on a summer research project on
high-dimensional statistics, supervised by Dr Tengyao Wang. I would like to thank Dr Wang for
offering me this opportunity to work with him, and for his immense patience and encouragement.

London, Sep 2021
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Chapter 1

Background

1.1 Frequentist Hypothesis Testing
Hypothesis testing is one of the first few concepts in modern Statistics, and it was originally
phrased as in a Frequentist fashion. There are two rather different ways of constructing a
hypothesis test under the Frequentist category - Fisherian test and Neyman-Pearson Test.

The Fisherian test, created by R. A. Fisher, only involves one hypothesis, the null hypothesis.
We will calculate using the collected data, under the assumption that the null hypothesis is true,
the probability of the data we receive is at least as extreme as this. This quantity, which is a
random variable, is known as the p-value p. To decide whether the null hypothesis is rejected
or not, we introduce a rather artificial threshold known as the significance level (or α), such that
we will reject the hypothesis if p < α. This value, under the traditional Fisherian framework, is
pre-determined and may vary depending on the situations.

The Neyman-Pearson (NP) test, created by Jerzy Neyman and Egon Pearson, is based on the
Neyman-Pearson lemma. It involves a pair of hypotheses, the null hypothesis H0 and alternative
hypothesis H1. Here, we still have the concept of significance level α, but it is defined differently.
Being predetermined, the significance level is the probability of rejecting the null hypothesis
when the null hypothesis is in fact true. This is also known as the probability of Type I error.
The significance level α is heavily used in this framework, since we construct the rejection region
of the observed data Rα based on the value of α such that P(Rα|H0) = α. This is very different
from the Fisherian version where α is merely a threshold for rejection.

The review paper by Ronald (2005) summarised various characteristics of these two methods
of test as shown below.

The basic elements of a Fisherian test are: (1) There is a probability model for the
data. (2) Multidimensional data are sum- marized into a test statistic that has a
known distribution. (3) This known distribution provides a ranking of the “weird-
ness” of various observations. (4) The p-value, which is the probability of observing
something as weird or weirder than was actually observed, is used to quantify the
evidence against the null hypothesis. (5) α level tests are defined by reference to the
p-value.
The basic elements of an NP test are: (1) There are two hypothesized models for
the data: H0 and HA. (2) An α level is chosen which is to be the probability of
rejecting H0 when H0 is true. (3) A rejection region is chosen so that the probability
of data falling into the rejection region is α when H0 is true. With discrete data, this
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often requires the specification of a randomized rejection region in which certain data
values are randomly assigned to be in or out of the rejection region. (4) Various tests
are evaluated based on their power properties. Ideally, one wants the most powerful
test. (5) In complicated problems, properties such as unbiasedness or invariance are
used to restrict the class of tests prior to choosing a test with good power properties.

Though being opposing views initially, the line separating the two methods of hypothesis
testing has been greatly blurred and they are all mixed up in today’s teaching and applications.
Still, it is good to notice certain currently seemingly homogeneous things were, in fact, originated
from heterogeneous backgrounds.

Later on, the Bayesian side of Statistics proposed the Bayesian version of hypothesis testing
that is different from either of the previously mentioned two. The Bayesian hypothesis test will
be described later.

1.2 Single Hypothesis Testing
In a single hypothesis test setting, we would choose to either reject or not reject the null hypoth-
esis H0 under a particular significance level. This choice may be erroneous, and there are two
kinds of errors associating with a test, as shown in Table 1.1.

H0 is true H0 is false

Reject H0

Type I Error
False Positive

α

True Positive
1− β

Not Reject H0
True Negative

1− α

Type II Error
False Negative

β

Table 1.1: Single Hypothesis Testing Result

Here, the value 1− β is known as the power of the test, it measures the probability that the
test correctly rejects the null hypothesis when it is indeed false. α is the significance level of
the test, which is (supposedly) pre-determined and is used to decide the values of test statistics
for the null hypothesis to be rejected.

Another concept associated with a hypothesis test is its p-value. Assuming the null hypoth-
esis is true, the p-value is the probability that the test statistic is as, or more, extreme than the
one we obtained. It is a random variable, and its realisations are also called p-values. When the
p-value of a test is smaller than the predetermined significance level α, we would reject the null
hypothesis. One thing to notice about the p-value is that if the null hypothesis is true, it follows
a Uniform(0,1) distribution.

Now, if we set the significance level α as 0.05, meaning that we will reject our null hypothesis
if the p-value is less than 0.05, we will have a false positive result (rejecting the null hypothesis
when it is true) 5% of the time. This chance or error leads to the occurrence of p-hacking, a way
to pick a particle set of data among many that rejects the null hypothesis when H0 is true.

The occurrence frequency of false positives depends on the value of α. If we do multiple
hypothesis tests to the same set of data while remaining with our significance level α for each
individual test, we will have a much more substantial amount of errors in our results. For
example, if we do 10000 hypothesis testing each at significance level 5%, we will make 500 false
positive decisions on average. This kind of mistakes is known as multiple testing problem, or
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interchangeably as multiplicity and multiple comparisons problem. This problem does exist in
reality. For example, in quantitative trait loci and microarray analyses, the number of hypotheses
tested in an experiment reached thousands, which made the issue of multiple testing a more
important one (Benjamini, 2010).

1.3 Organisation of Chapters
In Chapter 2, we will discuss the family-wise error rate and introduce two methods to control
it. In Chapter 3, we will mention the false discovery rate, the Benjamini-Hochberg procedure,
and how we can weaken the dependency condition of test statistics for the standard Benjamini-
Hochberg procedure. An alternative set of proofs for this procedure will be provided as well. In
Chapter 4, we will provide an alternative formulation of false discovery rate using the language
of empirical Bayes. In Chapter 5, we will introduce the concept of e-variable and e-value, as a
supplement, or even an alternative, to p-value. We will also be talking about how the e-values
can rephrase the Benjamini-Hochberg procedure.
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Chapter 2

Family-wise Error Rate

In this chapter, we will be introducing the concept of family-wise error rate, and state some
methods that control it.

2.1 FWER
Analogue to Table 1, we have the following table to establish the case when we have m null
hypotheses denoted by H1,H2, · · · ,Hm.

H0 is true H0 is false Total
Reject H0 V S R

Not Reject H0 U T m−R
Total m0 m−m0 m

Table 2.1: Multiple Hypothesis Testing Result

Here, the capital letters V, S, U, T and R are all random variables with R being the only
observable one among them, and m0 and m are known values in advanced.

According to Hochberg and Tamhane (1987), the problem of significance arises when we view
multiple hypothesis testing as separate inferences rather than related ones. This leads to the
introduction of the concept of ‘family’, which is defined by the authors to be ‘any collection of
inferences for which it is meaningful to take into account some combined measure of errors’.

Here, the random variable V denotes the number of Type I Errors we made among the m
decisions, so we would want to limit it. We will control P(V ≥ 1), the probability of making at
least one false positive, and we will call this quantity as family-wise error rate, or FWER.
So, we have

FWER = P(V ≥ 1) = 1− P(V = 0).

When controlling the FWER, there are two types of controls, namely the weak control and the
strong control. A particular procedure will control the FWER in the weak sense if the FWER
control at level α is guaranteed only when all null hypotheses are true. We will call a procedure
to control the FWER in the strong sense if the control at level α is guaranteed when at least one
null hypothesis is true.
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2.2 Bonferroni Correction
One way to control the FWER is by applying the Bonferrnoi correction. If we would want the
overall significance level of the family of tests to be α, then we will be setting the significance
level for each one of the m test lower, and the Bonferroni correction suggests α

m .
To show this correction actually controls the FWER, we first have the Boole’s inequality

which states that for a countable set of events A1, A2, A3, · · · , we have

P(
∪
i

Ai) ≤
∑
i

P(Ai),

which follows from the sub-additivity property of probability measure.
With this inequality, since we are rejecting each null hypothesis Hi when its p-value pi ≤ α

m ,
we would have

FWER = P(V ≥ 1)

= P
( m0∪

i=1

(pi ≤
α

m
)
)

since there are m0 of them with true null hypothesis

≤
m0∑
i=1

P(pi ≤
α

m
) by Boole’s inequality

=

m0∑
i=1

α

m
since p-value follows Uniform(0,1) when null hypothesis is true

=
m0

m
α ≤ α,

which indicates that the FWER is controlled under level α.
It should not be too hard to notice that this control is too strict. For example, FWER is

actually controlled under m0

m α instead of α, which could be much lower if m0 is much smaller
than m. Having a strict control for Type I errors implies an increase in Type II errors, which
is why Bonferroni correction is not always good. However, since his correction is an easy one to
apply, it is still used in practice.

2.3 Holm-Bonferroni Method
As an improvement of the Bonferroni correction, Holm (1979) proposed the following method to
proceed the multiple tests.

For the m null hypotheses H1,H2, · · · ,Hm, we compute their respective p-values P1, P2, · · · , Pm

and we rank them such that P(k) denotes the k-th smallest p-value. So, P(1) ≤ P(2) ≤ · · · ≤ P(m),
and we denote the corresponding null hypotheses as H(1),H(2), · · · ,H(m). We would want to con-
trol the FWER at α.

• Is P(1) ≤ α
m? If so, reject H(1) and continue. Otherwise, EXIT.

• Is P(2) ≤ α
m−1? If so, reject H(2) and continue. Otherwise, EXIT.

...

• Is P(k) ≤ α
m−k+1? If so, reject H(k) and continue. Otherwise, EXIT.
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To show that this method does in fact keep the FWER at α, we let I0 be the set of indices
corresponding to the true null hypothesis. This set is unknown to us and has size m0. Let
us assume that we make the first false positive decision at H(h). Based on the procedures
stated above, all the decisions for null hypothesis H(1),H(2), · · · ,H(h−1) are true positives. Also,
we know for a fact that h − 1 ≤ m − m0 due to the definition of m − m0. This implies that
m−h+1 ≥ m0, and then 1

m−h+1 ≤ 1
m0

. Now, since H(h) is rejected, we would have P(h) ≤ α
m−h+1

by definition, so we will then have P(h) ≤ α
m−h+1 ≤ α

m0
. This means, if there is any false positive,

we have at least one true null hypothesis with p-value less than α
m0

. So,

FWER = P(V ≥ 1)

= P
( ∪

i∈I0

(Pi ≤
α

m0
)
)

≤
∑
i∈I0

P(Pi ≤
α

m0
) by Boole’s inequality

= m0
α

m0
since p-value follows Uniform(0,1) when null hypothesis is true

= α,

which indicates that the FWER is controlled at level α.
By looking at values of significance levels that we used to reject the null hypothesis, we

can immediate realise that the Holm-Bonferroni is uniformly more powerful than the Bonferroni
correction. So this is, indeed, an improvement of Bonferroni.

2.4 Issues with Controlling FWER
FWER controls the probability of making Type I errors. When we put stronger restrictions on
false positives, we will have the problem of having more false negatives, i.e. having a higher
probability of making Type II errors. This makes the power of the hypothesis testing decreases,
and not always a suitable control.

According to Benjamini and Hochberg (1995), methods that control FWER have flaws in
real-life applications.

1. Classical procedures that control the FWER in the strong sense, at levels conventional in
single-comparison problems, tend to have substantially less power than the per comparison
procedure of the same levels.

2. Often the control of the FWER is not quite needed. The control of the FWER is important
when a conclusion from the various individual inferences is likely to be erroneous when at
least one of them is. This may be the case, for example, when several new treatments are
competing against a standard, and a single treatment is chosen from the set of treatments
which are declared significantly better than the standard. However, a treatment group and
a control group are often compared by testing various aspects of the effect (different end
points in clinical trials terminology). The overall conclusion that the treatment is superior
need not be erroneous even if some of the null hypotheses are falsely rejected.

To improve on these aspects, Benjamini and Hochberg proposed to control a different measure
of error, the false discovery rate, which will be more ideal to help with the problem of multiplicity.
The discussion will be carried out in the next chapter.
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Chapter 3

False Discovery Rate

In this chapter, we will be introducing the concept of false discovery rate proposed by Benjamini
and Hochberg (1995), and state some of its controlling methods.

3.1 FDR
As mentioned at the end of the previous chapter, controlling FWER is not always ideal. There
is a need for a new point of view on the problem of multiplicity. A lot of the times, the number
of false positive should be controlled, but we should also consider this number relative to the
total number of rejections we are making. For example, among a total of 100 hypothesis testing,
if we make 2 false positives among 5 rejections, it is rather serious. However, it we make 2
false positives among 50 rejections, it is more bearable. The seriousness of the loss incurred by
false positives is inversely related to the number of hypotheses rejected (Benjamini & Hochberg,
1995). With that in mind, we need a different measure of error that accounts for the proportion
of errors among the rejected hypotheses, which is called the false discovery rate, or FDR. The
word ‘discovery’ is used since a rejected hypothesis was called a ‘statistical discovery’ by Soriç
(1989).

Using the notations in Table 2, we will define a new random variable Q = V/(V + S) where
Q = 0 when V + S = 0. This is the proportion of the false positives over all the rejected null
hypotheses. This is unobservable since we do not know V , or S, or their realisations v or s. We
will define the FDR as the expectation of Q,

FDR = E[Q] = E[V/(V + S)] = E[V/R].

To avoid the division by zero issue, we would have the alternative formula for FDR as

FDR = E[V/R|R > 0]P(R > 0).

Two properties of FDR can be easily shown. Firstly, if all the null hypotheses are true, FDR =
FWER. When s = 0 and v = r, Q = 0 if v = 0 and Q = 1 if v > 0, which means P(V ≥ 1) = E[Q].
This means a control of FDR is a control of FWER in the weak sense. The second property is,
when m0 < m, FDR is no bigger than FWER. Given m0 < m, v > 0 implies v/(v + s) ≤ 1,
which means V ≥ 1 =⇒ V ≥ v/(v + s) and P(V ≥ 1) ≥ E[Q]. This means a control of FWER
will control FDR. If a procedure controls FDR only, it would be more poewrful than one that
controls the FWER. The potential for increase in power is larger when more of the hypotheses
are non-true.
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One should note that FDR is not the only possible measure to capture the idea of the
proportion of false positives among all the rejected null hypotheses. In Benjamini and Hochberg
(1995), the authors mentioned two alternatives, that of E[V/R|R > 0] and E[V ]/E[R]. In the
paper, the authors explained their reasons of not choosing these two. However, they turned out
to be rather useful later on, and we will be discussed them in detail in later chapters.

3.2 Benjamini-Hochberg Procedure
In order to control the FDR as described above, Benjamini and Hochberg (1995) proposed a pro-
cedure that is latter commonly known as the Benjamini-Hochberg procedure, or BH procedure.

For the m null hypotheses H1,H2, · · · ,Hm, we compute their respective p-values P1, P2, · · · , Pm

and we rank them such that P(k) denotes the k-th smallest p-value. So, P(1) ≤ P(2) ≤ · · · ≤ P(m),
and we denote the corresponding null hypotheses as H(1),H(2), · · · ,H(m). We let the level of
FDR that we would want to control at as α. The procedure works as the following:

• Let k be the largest i for which P(i) ≤ i
mα.

• Reject all H(i) where i = 1, 2, · · · , k.

We would like to prove that this procedure does in fact control the FDR at level α. So we
have the following theorem.

Theorem 1. For independent test statistics and for any configuration of false null hypotheses,
the above precedure controls the FDR at α.

Proof. (Proof of Theorem) The theorem follows from the following lemma, whose proof will be
given after.

Lemma 1. For any m0 (0 ≤ m0 ≤ m) independent p-values corresponding to true null hypothe-
ses, and for any values that the m1 = m−m0 p-values corresponding to the false null hypotheses
can take, the BH procedure satisfies the inequality

E[Q|Pm0+1 = p1, · · · , Pm = pm1
] ≤ m0

m
α.

With that, whatever the joint distribution of the p-values of the false null hypotheses P ′′
1 , · · · , P ′′

m1

is, by integrating the above inequality, we would get

E[Q] ≤ m0

m
α ≤ α.

Proof. (Proof of Lemma) The proof is completed by an induction on m. When m = 1, the
lemma is true immediately. Now, assuming that the statement is true for m = m′, we would like
to show that it holds for m′ + 1.

If m0 = 0 and m1 = m− 0 = m, all the null hypotheses are false and Q will be 0. This means

E[Q|P1 = p1, · · · , Pm = pm] = 0 ≤ m0

m′ + 1
α.
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If m0 > 0, we denote the p-values corresponding to the true null hypotheses as P ′
i with i =

1, 2, · · ·m0 with the largest being P(m0). These p-values are i.i.d. and follow Uniform(0,1). We
will order the p-values of the m1 false null hypotheses and let them be p(1) ≤ p(2) ≤ · · · ≤ p(m1).
Next, we will define j0 to be the largest j in [0,m1] with

p(j) ≤
m0 + j

m′ + 1
α,

and we let p′′ = p(j0).
For the sake of simplicity in notation, we will let A to denote the event P(m0+1) = p(1), · · · , P(m) =

p(m1). So, conditioning on P ′
(m0)

= p for some variable p,

E[Q|A] =

∫ 1

0

E[Q|P ′
(m0)

= p,A]fP ′
(m0)

(p)dp

=

∫ p′′

0

E[Q|P ′
(m0)

= p,A]fP ′
(m0)

(p)dp+

∫ 1

p′′
E[Q|P ′

(m0)
= p,A]fP ′

(m0)
(p)dp

with fP ′
(m0)

(p) = m0p
m0−1.

In the first term, we have 0 ≤ p ≤ p′′. This means we are rejecting m0 + j0 hypotheses, and
we would have Q = m0/(m0 + j0). Using the inequality

p′′ = p(j0) ≤
m0 + j0
m′ + 1

α,

we would have ∫ p′′

0

E[Q|P ′
(m0)

= p,A]fP ′
(m0)

(p)dp =

∫ p′′

0

m0

m0 + j0
m0p

m0−1dp

=
[ m0

m0 + j0
pm0

]p′′

0

=
m0

m0 + j0
(p′′)m0

≤ m0

m0 + j0

m0 + j0
m′ + 1

α(p′′)m0−1

=
m0

m′ + 1
α(p′′)m0−1.

For the second term, we will consider separately the values of p when p(j0) < p(j) ≤ P ′
(m0)

= p <

p(j+1), and when p(j0) ≤ p′′ < P ′
(m0)

= p < p(j0+1). It is important to note that, based on the def-
inition of j0 and p′′, no hypothesis can be rejected due to the values of p, p(j+1), p(j+2), · · · , p(m1).
Therefore, when all hypotheses are considered with ordered p-values, a hypothesis H(i) could be
rejected only if there exists k with i ≤ k ≤ m0 + j − 1, where p(k) ≤ α · k/(m′ + 1), or

p(k)

p
≤ k

m0 + j − 1

m0 + j − 1

(m′ + 1)p
α.

When conditioning on P ′
(m0)

= p, the P ′
i/p for i = 1, 2, · · · ,m0 − 1 are i.i.d. random variables

following Uniform(0,1), and the pi/p for i = 1, 2, · · · , j are numbers corresponding to false null
hypotheses between 0 and 1. Then,

E[Q|P ′
(m0)

, A] ≤ m0 − 1

m0 + j − 1

m0 + j − 1

(m′ + 1)p
α =

m0 − 1

(m′ + 1)p
α.
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So, ∫ 1

p′′
E[Q|P ′

(m0)
= p,A]fP ′

(m0)
(p)dp ≤

∫ 1

p′′

m0 − 1

(m′ + 1)p
αm0p

m0−1dp

=
m0

m′ + 1
α

∫ 1

p′′
(m0 + 1)pm0−2dp

=
m0

m′ + 1
α(1− (p′′)m0−1).

Adding up the two terms, we would have

E[Q|A] ≤ m0

m′ + 1
α(p′′)m0−1 +

m0

m′ + 1
α(1− (p′′)m0−1) =

m0

m′ + 1
α,

which completes the proof.

3.3 Dependency of Test Statistics
As stated in bold in Theorem 1, one condition for the BH procedure is that the test statistics
need to be independent. This is quite a big restriction, since many hypothesis tests carried out
in practice are dependent to each other. There is a need to make some extension of the method
on that aspect, and these gaps are filled mostly by Benjamini and Yekutieli (2001). Here, I will
state without proof some of the key improvements.

We have already known from the previous section that the BH procedure will control the
FDR at (m0/m)α if test statistics are independent. By Theorem 5.1 of Benjamini and Yekutieli
(2001), we have

Independent Test Statistics:
FDR ≤ m0

m
α,

and Independent and Continuous Test Statistics:

FDR =
m0

m
α.

The main result of Benjamini and Yekutieli (2001) based on the dependency type positive re-
gression dependency on each one from a subset, or PRDS. First, we will call a subset D of Ω as
increasing if for some x ∈ D, y ∈ Ω and y ≥ x imply y ∈ D. For example, the first quadrant of
the R2 plane is an increasing set. Here, if x and y has more than one coordinate, y ≥ x means
yi ≥ xi for every coordinate. Now, if test statistics vector X is PRDS on I0, it means that for
any increasing set D and each i ∈ I0 ⊂ I, P(X ∈ D|Xi = x) is non-decreasing as x increases.
With this, we can state the main result.

Theorem 2. If the joint distribution of the test statistics is PRDS on the subset of test statistics
corresponding to true null hypotheses, the BH procedure controls the FDR at level less than or
equal to (m0/m)q.

Proof. Let us define the constants involved in the BH procedure as

qi =
i

m
q, i = 1, 2, · · · ,m.
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Let Av,s denote the event that the BH procedure rejects exactly v true and s false null hypotheses.
Here, k = v+ s hypotheses have been rejected, so all these hypotheses will have p-values ≤ qv+s.
The FDR will then be

FDR =

m1∑
s=0

m0∑
v=1

v

v + s
P(Av,s).

Here, v starts from 1 since FDR = 0 if v = 0, and v + s ≠ 0 for the fraction to make sense.
Now, we would want to find P(Av,s). We claim that

P(Av,s) =
1

v

m0∑
i=1

P({Pi ≤ qv+s} ∩Av,s).

Let us prove this claim. For a fixed v and s, let ω be a subset of {1, 2, · · · ,m0} of size m0. Then,
we let Aω

v,s be the event in Av,s where the v rejected true hypotheses have index ω. Here, the
index set {1, 2, · · · ,m0} is for the set of true null hypotheses. Also, the set of Aω

v,s for all possible
ω is a partition of Av,s with each of its element being disjoint. So, we would have

P({Pi ≤ qv+s} ∩Aω
v,s) =

{
P(Aω

v,s) i ∈ ω

0 i /∈ ω.

This is because, if i ∈ ω, {Pi ≤ qv+s} means that the hypothesis with index i is rejected. So,
{Pi ≤ qv+s} ⊃ Aω

v,s, and P({Pi ≤ qv+s}∩Aω
v,s) = P(Aω

v,s). If i /∈ ω, i will still be in {1, 2, · · · ,m0}
since this is the way i is summed. This implies that Hi becomes a rejected true null hypothesis
with index not inside ω, which contradicts with Aω

v,x. So,{Pi ≤ qv+s} and Aω
v,x are disjoint

events, making the probability of their intersection 0.
Then, we would have

m0∑
i=1

P({Pi ≤ qv+s} ∩Av,s) =

m0∑
i=1

∑
ω

P({Pi ≤ qv+s} ∩Aω
v,s)

=
∑
ω

m0∑
i=1

P({Pi ≤ qv+s} ∩Aω
v,s)

=
∑
ω

m0∑
i=1

1(i ∈ ω)P(Aω
v,s)

=
∑
ω

vP(Aω
v,s)

= vP(Av,s),

which implies P(Av,s) =
1
v

∑m0

i=1 P({Pi ≤ qv+s} ∩Av,s).
Combining this with the statement of FDR, we have

FDR =

m1∑
s=0

m0∑
v=1

v

v + s
P(Av,s)

=

m1∑
s=0

m0∑
v=1

v

v + s

(1
v

m0∑
i=1

P({Pi ≤ qv+s} ∩Av,s)
)

=

m0∑
i=1

( m1∑
s=0

m0∑
v=1

1

v + s
P({Pi ≤ qv+s} ∩Av,s)

)
.
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We would want the equation to be independent of v, but we still have to be dependent on it
since we have Av,s. This means we need to rewrite it using i and k = v + s.

For i = 1, 2, · · · ,m0, let P(i) be the vector of m− 1 p-values excluding Pi. Then, we let C
(i)
v,s

be the event in which if Pi is rejected then v− 1 true null hypotheses and s false null hypotheses
are rejected alongside with it. Thus, we have the equality

{Pi ≤ qv+s} ∩Av,s = {Pi ≤ qv+s} ∩ C(i)
v,s.

We then denote C
(i)
k = ⋓j≤kC

(i)
v,s. For each i, C(i)

k are disjoint, so we can rewrite the FDR as

FDR =

m0∑
i=1

( m1∑
s=0

m0∑
v=1

1

v + s
P({Pi ≤ qv+s} ∩Av,s)

)
=

m0∑
i=1

m∑
k=0

1

k
P({Pi ≤ qv+s} ∩ C

(i)
k ),

which is what we want.
Now, we will try to use the PRDS property. Let D

(i)
k = ∪j≤kC

(i)
j for k = 1, 2, · · · ,m. Notice

that D
(i)
m is the entire space. It is easy to spot that D

(i)
k are nondecreasing set. Using PRDS,

for p ≤ p′, we have P(D|Pi = p) ≤ P(D|Pi = p′) for some nondecreasing set D. We would also
have, for j ≤ l , qj ≤ ql and P(D|Pi ≤ qj) ≤ P(D|Pi ≤ ql). This means

P(D(i)
k ∩ {Pi ≤ qk})
P(Pi ≤ qk)

≤
P(D(i)

k ∩ {Pi ≤ qk+1})
P(Pi ≤ qk+1)

by the definition of conditional probability and setting j = k, l = k + 1, and D = D
(i)
k .

Using the above inequality, we have

P(D(i)
k ∩ {Pi ≤ qk})
P(Pi ≤ qk)

+
P(C(i)

k+1 ∩ {Pi ≤ qk+1})
P(Pi ≤ qk+1)

≤
P(D(i)

k ∩ {Pi ≤ qk+1})
P(Pi ≤ qk+1)

+
P(C(i)

k+1 ∩ {Pi ≤ qk+1})
P(Pi ≤ qk+1)

=
P(D(i)

k+1 ∩ {Pi ≤ qk+1})
P(Pi ≤ qk+1)

,

since D
(i)
j+1 = D

(i)
j + C

(i)
j+1 for all k ≤ m − 1. Notice that C

(i)
1 = D

(i)
1 , we repeat the above

inequality for k = 1, 2, · · · ,m− 1 and get

m∑
k=1

P(C(i)
k ∩ {Pi ≤ qk})
P(Pi ≤ qk)

≤ P(D(i)
m ∩ {Pi ≤ qk})
P(Pi ≤ qk)

=
P(Pi ≤ qk)

P(Pi ≤ qk)
= 1,

using the fact that D
(i)
m is the entire space.
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Thus,

FDR =

m0∑
i=1

m∑
k=0

1

k
P({Pi ≤ qv+s} ∩ C

(i)
k )

≤
m0∑
i=1

m∑
k=0

q

m

P({Pi ≤ qv+s} ∩ C
(i)
k )

P(Pi ≤ qk)

since P(Pi ≤ qk) ≤ qk =
kq

m
=⇒ 1

P(Pi ≤ qk)
≥ m

kq
=

1

k
· m
q

=⇒ 1

k
≤ q

m

1

P(Pi ≤ qk)

=
q

m

m0∑
i=1

m∑
k=0

P({Pi ≤ qv+s} ∩ C
(i)
k )

P(Pi ≤ qk)

≤ q

m

m0∑
i=1

1 using the above inequality

=
q

m
·m0 =

m0

m
q.

The proof is completed.

Remark. This proof can in fact be used to proof Theorem 1. Given that

FDR =

m0∑
i=1

m∑
k=1

1

k
P({Pi ≤ qv+s} ∩ C

(i)
k ),

since the test statistics are independent for the BH procedure, we would have independent p-
values and that means

FDR =

m0∑
i=1

m∑
k=1

1

k
P({Pi ≤

k

m
q} ∩ C

(i)
k )

=

m0∑
i=1

m∑
k=1

1

k
P({Pi ≤

k

m
q})P(C(i)

k )

=

m0∑
i=1

m∑
k=1

1

k
· k

m
qP(C(i)

k )

=

m0∑
i=1

m∑
k=1

q

m
P(C(i)

k )

=

m0∑
i=1

q

m
· 1 =

m0

m
q.

So, Theorem 1 has been shown.

We have shown that the control of FDR is at (m0/m)α for most of the scenarios in practice.
Notice that the coefficient m0/m is occurring every single time, if we can have an estimate for
m0 (we already know m), we can have a better procedure. This is because, although the level is
(m0/m)α, since we do not know m0 we have to set the level at α which could be too conservative
sometimes. If we can estimate m0, we can control the FDR at α exactly. Many research have
been done in order to estimate m0, and we will be talking about some of those work in the next
chapter.
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3.4 Alternative Proof for Theorem 1 & 2
The following proofs for the BH procedure control and the version with weaker dependency
condition are provided by E. Candés and R. Foygel Barber.

We want to prove the FDR control at α, or FDR ≤ (m0/m)α ≤ α where the equality of
FDR holds for independent and continuous test statistics. Earlier on, we define FDR to be
FDR = E[V/R]and V/R = 0 when R = 0. Here, we will use an alternative definition. We define
the value false discovery proportion, or FDP, to be

FDP =
V

R ∨ 1
=

{
V/R if R ≥ 1

0 otherwise.

Here, A ∨B = max(A,B). With FDP, we would have
FDR = E[FDP]

and this is clearly equivalent to the previous definition. Now, to show the proof, we will rewrite
FDP in the form of

FDP =
∑
i∈H0

Vi

R ∨ 1

where i ∈ H0 is the set of index corresponding to true null hypotheses with size m0, and
Vi = 1{Hi is rejected}. We then see that if we claim E[Vi/(R ∨ 1)] = α/m

FDR = E[FDP] = E[
∑
i∈H0

Vi

R ∨ 1
] =

∑
i∈H0

E[
Vi

R ∨ 1
] =

∑
i∈H0

α

m
=

m0

m
α

This means, to prove the FDR control, we just need to show that E[Vi/(R ∨ 1)] = α/m for the
independent case or E[Vi/(R ∨ 1)] ≤ α/m for the PRDS case.

Proof. (Theorem 1)
To prove Theorem 1, we only need to prove the claim E[Vi/(R ∨ 1)] = α/m. Now, we will have

Vi

R ∨ 1
=

m∑
k=1

Vi1{R = k}
k

.

Also, based on the BH procedure, we have two observations. Firstly, when there are k rejections,
some Hi will be rejected if and only if pi ≤ (k/m)α. So, we have Vi = 1{Hi is rejected} = 1{pi ≤
(k/m)α}. Secondly, if we reject some Hi, or we have pi ≤ (k/m)α, let us take pi and set its value
to 0, and denote the new number of rejection by R(pi → 0). This new number is exactly the
same as R. If we reject Hi, since the rejection of hypotheses only take out the k hypotheses and
this change of pi is not affecting the hypotheses we are taking. If we do not reject Hi, Vi will be
0 so the value of R would not matter. Thus, we would have Vi1{R = k} = Vi1{R(pi → 0) = k}.

Combining the observations and taking the expectation conditional on all p-values except for
pi, i.e. Fi = {p1, · · · , pk−1, pk+1, · · · , pm}, we have

E[
Vi

R ∨ 1
|Fi] =

m∑
k=1

E[Vi1{R = k}|Fi]

k

=

m∑
k=1

E[1{Hi is rejected}1{R(pi → 0) = k}|Fi]

k

=

m∑
k=1

(k/m)α · 1{R(pi → 0) = k}
k
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where the last equality holds due to the face that pi ∼ Uniform(0,1) under true null hypotheses
and they are independent. Also, given Fi and pi = 0, 1{R(pi → 0) = k} is deterministic. This
also means

∑m
k=1 1{R(pi → 0) = k} = 1. This is because by setting pi = 0, we will have at least

one rejection and R(Pi → 0) ≥ 1. Also, since R(Pi → 0) is deterministic and fixed, it will be one
of the values from 1 to m. So, we have

E[
Vi

R ∨ 1
|Fi] =

α

m

m∑
k=1

1{R(pi → 0)} =
α

m
.

Using the tower property E[X] = E[E[X|Y ]] for two random variables X and Y , we can conclude
that E[Vi/(R ∨ 1)] = E[E[Vi/(R ∨ 1)]|Fi] = E[α/m] = α/m.

From the above proof, we only use the independence between the true null hypotheses, and the
dependency between the false ones are not important to the proof. This means, assuming all test
statistics being independent may be too strong of a condition, and we certainly should weaken
it. With that, we have Theorem 2 that only assumes PRDS on the true nulls.

Proof. (Theorem 2)
As mentioned earlier, to prove Theorem 2, we only need to prove the claim E[Vi/(R∨ 1)] ≤ α/m
under PRDS on true null hypotheses. We have the same setting as the previous proof. Then,
we set qk = k/m · α and have

Vi

R ∨ 1
=

m∑
k=1

1{pi ≤ qk}1{R = k}
k

=

m∑
k=1

1{pi ≤ qk}(1{R ≤ k} − 1{R ≤ k − 1})
k

=

m∑
k=1

1{pi ≤ qk}1{R ≤ k}
k

−
m∑

k=1

1{pi ≤ qk}1{R ≤ k − 1}
k

=

m∑
k=1

1{pi ≤ qk}1{R ≤ k}
k

−
m−1∑
k=0

1{pi ≤ qk+1}1{R ≤ k}
k + 1

=
1{pi ≤ qm}1{R ≤ m}

m
+

m−1∑
k=1

1{pi ≤ qk}1{R ≤ k}
k

−
m−1∑
k=1

1{pi ≤ qk+1}1{R ≤ k}
k + 1

=
1{pi ≤ qm}1{R ≤ m}

m
+

m−1∑
k=1

[1{pi ≤ qk}
k

− 1{pi ≤ qk+1}
k + 1

]
1{R ≤ k}.

Notice that
E[

1{pi ≤ qm}1{R ≤ m}
m

] =
α

m
,

since R ≤ m is always true and pi follows Uniform(0,1) under true null. So, if we can show that

E[
m−1∑
k=1

[1{pi ≤ qk}
k

− 1{pi ≤ qk+1}
k + 1

]
1{R ≤ k}] ≤ 0,
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our claim will be proved. Now, for each k, we have

E[
[1{pi ≤ qk}

k
− 1{pi ≤ qk+1}

k + 1

]
1{R ≤ k}]

=
P(pi ≤ qk, R ≤ k)

k
− P(pi ≤ qk+1, R ≤ k)

k + 1

=
P(R ≤ k|pi ≤ qk)P(pi ≤ qk)

k
− P(R ≤ k|pi ≤ qk+1)P(pi ≤ qk+1)

k + 1

≤ P(R ≤ k|pi ≤ qk+1)P(pi ≤ qk)

k
− P(R ≤ k|pi ≤ qk+1)P(pi ≤ qk+1)

k + 1
by PRDS

= P(R ≤ k|pi ≤ qk+1)
[P(pi ≤ qk)

k
− P(pi ≤ qk+1)

k + 1

]
= P(R ≤ k|pi ≤ qk+1)

[kα
m

· 1
k
− (k + 1)α

m
· 1

k + 1

]
= 0.

For the inequality, we used the PRDS property and said that

P(R ≤ k|pi ≤ qk) ≤ P(R ≤ k|pi ≤ qk+1).

By definition of PRDS, for any increasing set D and each i ∈ I0 ⊂ I, P (X ∈ D|Xi = x) is
non-decreasing as x increases. A consequence of this is that if we have x ≤ x′, we would have

P(X ∈ D|Xi ≤ x) ≤ P(X ∈ D|Xi ≤ x′).

Notice that when pi increases, we will have less rejections and make {R ≤ k} increases. So,
{R ≤ k} is indeed an increasing set.
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Chapter 4

FDR Control using Empirical
Bayes

The following content are mostly adapted from the book “Large-Scale Inference” by Efron (2010).

4.1 Bayesian Hypothesis Testing
In the Frequentist setting, or more specifically the Neyman-Pearson setting, we are making a
decision between two hypothesis - null hypothesis H0 and alternative hypothesis H1. In the
Bayesian setting, things are similar but the result of the test is viewed as a random variable H.
If the null hypothesis is true, we will have H = 0; and if the null hypothesis is false, we will have
H = 1. Their prior probabilities are P(H = 0) = π0 and P(H = 1) = π1 = 1− π0.

The test statistics will be denoted as Z, and it has different distributions under true and false
null hypothesis. When H = 0, we have Z ∼ f0 with CDF F0. When H = 1, we have Z ∼ f1
with CDF F1. Combining these two, we have a hierarchical model with H ∼ Bernoulli(π1) and
Z ∼ FH . So, the pdf of Z is P(Z = z) = f(z) = π0f0(z) + π1f1(z).

Now, the probability of the null hypothesis being true or false will be updated once we have
collected data. Assuming we observe a test statistics value Z = z, we would like to know the
probabilities P(H = 0|z) and P(H = 1|z). If one is bigger than the other, we will know which
hypothesis we should pick. To compute these two probabilities, we will use the Bayes rule. This
gives us

P(H = 0|z) = P(z|H = 0) · P(H = 0)

P(Z = z)
=

π0 · f0(z)
f(z)

and
P(H = 1|z) = P(z|H = 1) · P(H = 1)

P(Z = z)
=

π1 · f1(z)
f(z)

.

The comparison between P(H = 0|z) and P(H = 1|z), after some computations, is equivalent to
the comparison between π0 · f0(z) and π1 · f1(z).

The ratio of these two probabilities has its own name, the Bayes factor. Normally, we will
put the probability for the null hypothesis at the denominator. There are certain existing thresh-
olds for this factor for people to determine how strong the evidence is to choose a hypothesis,
just like the frequently used 0.05 and 0.1 significance level for Frequentist tests.
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4.2 Bayes FDR
The setting in the above section can be extended to the case where we are doing multiple
hypothesis testing. The setting will be identical, and we will let the total number of tests be N .

Now, for a subset A of the real line, we define φ(A) = P(H = 0|z ∈ A). Using Bayes rule, we
have

φ(A) = P(H = 0|z ∈ A) =
P(H = 0) · P(z ∈ A|H = 0)

P(z ∈ A)
=

π0 · F0(A)

F (A)

where F0(A) =
∫
A
f0(z)dz and F (A) =

∫
A
f(z)dz.

If we set A in such a way that z ∈ A means the null hypothesis if false, the above probability
will be the probability of the null hypothesis actually being false given that we reject it, which
is exactly what false discovery rate is about. Thus, the quantity φ(A) where z ∈ A means the
null hypothesis if false is known as the Bayes false discovery rate, or BFDR. For simplicity,
we will also write φ(A) as Fdr(A).

This quantity is a random variable and it involves π0, f0, and f1. Here, π0 is almost known,
and is usually near 1 in practice. Since we are normally calculating this quantity in the context
of multiple testing like genetic research, we would only have a very small portion of false null
hypothesis, making the ratio close to 1. The function f0 is also known, since we would normally
have z-values (or z-scores) as the test statistics, which follows a standard normal distribution
N(0, 1). The remaining f1 is unknown, and it is hard to find out.

To deal with difficulties of this kind, people thought, since we have so many data available,
why don’t we do an estimate of the distribution of f as that is the only unknown? If we can
estimate f , we can estimate the target quantity. This idea of improving Bayesian inference with
Frequentist estimations grows out to be a whole branch of thoughts known as the empirical
Bayes, with this name coined by its founder Herbert Robbins in Robbins (1956).

We let F̄ (A) be the empirical distribution of the N z-values and define it to be

F̄ (A) =
#{z ∈ A}

N
,

i.e. the proportion of the z-values that are being rejected. Now, substituting this value into Fdr,
we get

Fdr(A) = φ̄(A) =
π0 · F0(A)

F̄ (A)
.

For large values of N , we would expect F̄ (A) to be a good estimation of F (A), and by extension
Fdr(A) being a good estimation of Fdr(A).

4.3 BH Procedure using Empirical Bayes
Recall from earlier chapter that the BH procedure is a method that controls the FDR of the
multiple testing. Now that we have Bayes FDR, can we rewrite BH procedure using that?

The BH procedure of n hypothesis tests that controls the FDR at level α will reject all the
smallest k p-values with

k = max{i : p(i) ≤
i

n
α}.

We can map the p-values with z-values using

pi = F0(zi)
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for F0(·) being the cdf of Z when the null hypothesis is true, i.e. being N(0, 1). This means each
p(i) will be mapped to F0(z(i)), and

i

n
=

#{zj ≤ z(i)}
n

= F̄ (z(i)).

So, the BH procedure threshold can be transformed, and we have

p(i) ≤
i

n
α =⇒

p(i)

i/N
≤ α =⇒

F0(z(i))

F̄ (z(i))
≤ α =⇒ Fdr(z(i)) = π0 ·

F0(z(i))

F̄ (z(i))
≤ π0α ≤ α.

Thus, the BH procedure using empirical Bayes controlling FDR at will be rejecting all the k
hypothesis with k being the largest value of index i with Fdr(z(i)) ≤ α.

It is not straightforward to understand the rationale behind the BH procedure. Why is the
critical line what it is? Why do we reject until the last crossing? It is all a bit mysterious and we
can minimally justify BH procedure by simply stating and proving that it works. The empirical
Bayes approach shows the power of thinking about multiple testing problems in a Bayesian
framework. Using the Bayesian machinery, we are able to arrive at the BH procedure far more
simply than by restricting ourselves to the Frequentist framework. We only need to compute
the estimated Bayes FDR of each one of the tests and cut off at α level. The procedure become
easier to understand.

4.4 Quality of Bayesian FDR estimator
The empirical Bayes BH procedure is phrased using Fdr, the Bayesian FDR estimator. How good
is this estimator exactly? Is it good enough so that the procedure will yield satisfying results?
In this section we will be exploring the quality of the estimator.

To find out how good an estimator Fdr(A) is, we need to adopt some notations. We
let N0(A) = #{i : zi ∈ A and being true null} denote the number of true nulls being re-
jected, and e0(A) = E[N0(A)] be its expectation. Furthermore, we let N1(A) = #{i : zi ∈
A and being false null} denote the number of false nulls being rejected, and e1(A) = E[N1(A)]
be its expectation. So, the total number of rejected hypothesis will be N+(A) = #{i : zi ∈ A} =
N0(A) +N1(A), and its expectation is e+(A) = E[N+(A)]. So, we would have

Fdr(A) =
π0 · F0(A)

F̄ (A)
=

nπ0 · F0(A)

nF̄ (A)
=

e0(A)

N+(A)

and
Fdr(A) =

e0(A)

e+(A)
.

In addition, we will need another quantity, the false discovery proportion. The false discovery
portion, Fdp, is defined to be

Fdp(A) =
N0(A)

N+(A)

and this is the same quantity as defined in earlier chapter. So, we would also have Fdr(A) =
E[Fdp(A)]. To discuss the relationships between the above mentioned quantities and illustrate
how good Fdr(A), we will state without proof the following two lemmas.
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Lemma 2. Suppose e0(A) is the same as the conditional expectation of N0(A) given N1(A).
Then the conditional expectation of Fdr(A) and Fdp(A) given N1(A) satisfy

E[Fdr(A)|N1(A)] ≥ φ1(A) ≥ E[Fdp(A)|N1(A)]

where
φ1(A) =

e0(A)

e0(A) +N1(A)
.

This lemma says that for every value of N1(A), the conditional expectation of Fdr(A) exceeds
that of Fdp(A), so that in the sense the empirical Bayes FDR is a conservatively biased estimate
of the actual FDP. Taking expectation over N1(A) and applying Jensen’s inequality shows that

φ(A) ≥ E[Fdp(A)] = FDR(A),

so that the Bayes FDR is an upper bound of the traditional FDR.

Lemma 3. Let γ(A) indicate the squared coefficient of variation of N+(A),

γ(A) =
Var[N+(A)]

e+(A)2
.

Then Fdr(A)/φ(A) has approximate mean 1 + γ(A) and variance γ(A).

This lemma quantifies the obvious: the accuracy of Fdr(A) as an estimate of the Bayes FDR
depends on the variability of the denominator of N+(A).
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Chapter 5

FDR Control using E-Values

The following content are mostly adapted from the paper by Wang and Ramdas (2020).

5.1 E-Variable and E-Value
As mentioned in earlier chapter, p-value is a random variable of the probability that the test
statistics is at least as extreme under the assumption that the null hypothesis is true. This
random variable is phrased in terms of probability of an event. Here, we proposed a different
random variable, the e-variable, which can serve as either as an enhancement or as an alternative
to p.

For data X following distribution P and null hypothesis H0, the e-variable is a nonnegative
random variable E for testing null hypotheses H0 that is defined by

sup
P0∈H0

EP0E(X) ≤ 1.

Here, the realisations of e-variables are called e-values to avoid confusion between the random
variable and its realisation like that of the p-value.

To illustrate its difference to p-value, let us define p-variable (the random variable version of
p-value). A random variable P is called a p-variable for testing H0 if

sup
P0∈H0

PP0(P (X) ≤ α) ≤ α ∀α ∈ (0, 1).

We can see immediately that p-variables control the probability while e-variables control expec-
tation. To relate the two concepts, we have the following theorem.

Theorem 3. Let E be an e-variable. If P = E−1, then P(P ≤ α) ≤ α.

Proof. We fix a P0 ∈ H0. Then, we have

PP0(P ≤ α) = PP0(
1

E
≤ α)

= PP0
(E ≥ 1

α
)

≤ EP0(E)

1/α
using Markov’s inequality

= αEP0(E) ≤ α by the definition of E.
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Remark. This E−1 is rather conservative, since the bound by Markov’s inequality may not be
tight.

5.2 e-BH procedure
Earlier on, we have mentioned about the BH procedure, and it involves cutting off at the largest
i for which p(i) ≤ i

mα. Since we have already shown that we could replace P with E−1, we could
modify the BH procedure using E instead of P .

For each of the hypothesis H1,H2, · · · ,Hm, they have the e-values e1, e2, · · · , em. We will
order them in descending order, and have them as e(1) ≥ e(2) ≥ · · · ≥ e(m). We will reject all the
hypotheses with the largest k e-values where k is the largest i for which ie(i)

m ≥ 1
α . This should

not be a surprise. Since p(i) = 1/e(i), we have

p(i) ≤
i

m
α =⇒ 1

p(i)
≥ m

iα
=⇒ e(i) ≥

m

i
· 1
α

=⇒ i

m
e(i) ≥

1

α
.

This modified version of BH procedure using e-values is known as the e-BH procedure. To make
sure this procedure really works, we will prove its FDR control.

Theorem 4. The e-BH procedure has FDR at most m0α/m.

Proof. Recall from earlier, we have the definition

FDP =
V

R ∨ 1
=

∑
i∈H0

Vi

R ∨ 1

where we sum over all the indices of true null hypotheses H0. Now, for any rejected i, we will
have

1

R
≤ 1

i
≤ i

m
e(i)

where the first inequality is due to the fact that i ≤ R. We will take the first and last term of
the inequality after multiplying Vi and sum over all true null. This means, we have

FDP =
∑
i∈H0

Vi

R ∨ 1
≤

∑
i∈H0

Viie(i)

m

and this gives us
FDP ≤

∑
i∈H0

Viie(i)

m
≤

∑
i∈H0

ie(i)

m
≤ α

m

∑
i∈H0

e(i).

Taking expectation of the above inequality, we have

FDR = E[FDP] ≤ E[
α

m

∑
i∈H0

e(i)] =
α

m

∑
i∈H0

E[e(i)] ≤
α

m

∑
i∈H0

1 =
m0

m
α.
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