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1 Introduction

The multi-armed bandit problem (MABP) considers the decision problem of opti-
mally allocating resources (or pulls) to different arms in a sequential manner (making
further decisions based on current observations rather than following the same rule
throughout) to maximise the overall expected gain of pulling the arms (Gittins, 1979).
The MABP has been studied as a key example of a reinforcement learning (RL) prob-
lem (Sutton and Barto, 2018) and the field of RL has received a significant amount
of attention and development over the years due to successful applications such as
AlphaGo (Silver et al., 2016). Applications of MABP in the design of clinical trials,
although being one of the earliest applications in mind of MABP (e.g. Thompson
Sampling (Thompson, 1933)), have been rarely implemented in real life.

The gold standard of clinical trial design is the randomisation controlled trial
(RCT) (Friedman et al., 2015), where each patient is allocated to the control group
or the treatment group with the same fixed and pre-determined probability. A con-
sequence of this strict randomisation rule is that we might allocate patients to a par-
ticular group even when there is strong evidence that the other group has superior
performance. This raises the ethical problem of individual benefit (giving the patient
more effective treatment) versus collective benefit (maintaining the rigour of the trial)
(Freedman, 1987). Because of this issue, people have considered response-adaptive
randomisation (RAR) (Robertson et al., 2023) as an alternative which adjusts the
randomisation probability according to the trial outcomes at various interim times.

However, the RAR trials have been considered controversial in the community. Some
polar opposite opinions include: “If you are planning a randomized comparative clinical
trial and someone proposes that you use outcome adaptive randomization, Just Say
No” (Thall and Wathen, 2007), and “... optimal [RAR] designs allow implementation
of complex optimal allocations in multiple-objective clinical trials and provide valid
tools to inference in the end of the trial. In many instances they prove superior over
traditional balanced randomization designs in terms of both statistical efficiency and
ethical criteria” (Rosenberger et al., 2012).

A key failed attempt of RAR trials is the ECMO trial of Bartlett et al. (1985). In that
trial, due to the initial successes of the treatment, way too many patients were allocated
to the treatment group, causing a significant imbalance in the number of patients in
the two groups (11 out of 12 total patients were allocated to the treatment group).
This raised serious doubts within the community regarding the reliability of the trial
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results, causing a second trial to be conducted using fixed randomisation (Ware, 1989)
and further uses of RAR in clinical trials to be severely limited (Robertson et al.,
2023).

In Section 2, we will look at the RAR rule used in the ECMO trial of Bartlett
et al. (1985) and discuss why it failed. In Section 3, we will introduce two dynamic
programming-based rules as improvements and compare them using a range of metrics.
We conclude in Section 4.

2 The ECMO Trial

The RAR rule used in the ECMO trial of Bartlett et al. (1985) is the randomised
play-the-winner (RPW) rule of Wei and Durham (1978). We assume there are one
control group and one treatment group in our trial. The RPW rule is a randomised
version of the Play-The-Winner rule by Zelen (1969), which is a deterministic rule
that will allocate the next patient based on the performance of the previous patient - if
the previous patient is allocated to a particular group and had a successful/unsuccessful
outcome, then the next patient will be allocated to the same/opposite group. The
RPW rule is based on an urn model, where we start off with u balls for each of the
control group and treatment group. Every time a new patient enters the trial, a ball is
drawn with replacement to determine which group the patient is allocated to. The urn
will then be updated based on the outcome of the patient - if the outcome is successful,
β balls will be added to that group and α balls will be added to the opposite group.
Here, β ≥ α ≥ 0. This means we will start with an equal probability of allocation to
control and treatment, but as there are more outcomes, the probability of allocation
for the more successful group would be higher. Such an allocation rule is called an
RPW(u, α, β) rule.

It is quite obvious that the specifications of the parameters u, α, β would induce very
different allocation behaviours. For example, if the relative sizes of α and β are much
smaller than u, the allocation probability would not be altered drastically for a small
number of patient outcomes. On the other hand, if α and β are about the same
or larger than u, the allocation probability would be greatly altered by only a few
patient outcomes. This is exactly what happened during the ECMO trial of Bartlett
et al. (1985), where they used an RPW(1, 0, 1) rule. Note that this is the same as the
Thompson sampling with Beta-Bernoulli conjugacy and the Beta prior has parameters
(1, 1) which is exactly the value of u.

The control group (C) of the ECMO trial was treated with conventional therapy, and
the treatment group (T) was treated with ECMO. The sample size calculations stated
that if the survival rate gap is greater than 0.4, a sample size of 10 would give 95% of
the patients to the superior treatment. The outcome of this trial is listed in the table
below.

Allocation T C T T T T T T T T T T

Outcome ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Outcome of the ECMO trial of Bartlett et al. (1985)

The clear imbalance of the allocations is the major criticism of this work, and the
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imbalance could be significantly remedied by a change in the parameterisation of the
RPW rule. To investigate1 the effect of u values on the final allocation ratio, we ran
100,000 Monte Carlo iterations with the true success probability of C and T being 0.2
and 0.65 respectively according to the previous evidence mentioned in Bartlett et al.
(1985). We fix α = 0, β = 1, and vary u, while keeping the total number of patients
to be 12.

u E[#C] E[#T ] P[#T ≥ 11]

1 4.39 7.61 0.051

5 5.17 6.83 0.012

10 5.46 6.54 0.007

Table 2: Monte Carlo Simulation Results Summary

Note that the last column, to a certain extent, represents the one-sided p-value of
observing the result of Table 1. The ratio is relatively balanced for u = 1, in fact, but
it would be much better if a higher value, say u = 5, is used instead. That would also
yield a more convincing argument for the ECMO trial. However, one should also keep
in mind that the statistical significance of a trial with size 12 is ultimately limited.

3 Alternative RAR Rules and Performance Assessments

3.1 Optimal Design via Dynamic Programming

The response adaptive design problem with two arms and binary outcomes, such as
the ECMO trail in Section 2, can be viewed as an MABP, which could be formulated
formally as a dynamic programming (DP) problem and solved given some formal notion
of rewards (Sutton and Barto, 2018). This realisation allows us to design RAR rules
more rigorously via finding the optimal policy of the dynamic programme, and two
such policies/rules, studied in Williamson et al. (2017), are introduced in this and
following subsections. Note that we adopt similar notations as that of Williamson
et al. (2017). A formal treatment of DP for MABP can be found in Chapter 4 of
Sutton and Barto (2018), where concepts such as value function, value iteration, and
policy improvements are studied.

We assume the patients arrive one by one, and the outcome is known immediately. The
two treatment groups are denoted by A and B. The trial is assumed to be run for a
fixed number of patients n. For each patient, the outcome of the treatment is modelled
by a Bernoulli random variable, which we denote by X ∼ Ber(θA) and Y ∼ Ber(θA)
for groups A and B with success probabilities θA and θB respectively. The reward is
set to be the total expected number of successes of the whole trial.

Using a Bayesian approach, we would set priors on θA and θB, and as the likelihood is
Bernoulli, we would use the conjugate prior which is the Beta distribution Beta(α, β).
The following table summarises the update rules after knowing the outcomes of t
patients.

Therefore, the value function representing the total maximum expected reward after

1Code for the simulation can be found here.
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Prior (α, β) # Succ. & Fail. at t Posterior (α, β)

A (sA,0, fA,0) (sA,t, fA,t) (s̃A,t, f̃A,t) = (sA,0 + sA,t, fA,0 + fA,t)

B (sB,0, fB,0) (sB,t, fB,t) (s̃B,t, f̃B,t) = (sB,0 + sB,t, fB,0 + fB,t)

Table 3: Prior and Posterior Specifications

observing t results is

Ft(sA, fA, sB, fB)

= max
π∈Π

Eπ

n−1∑
v=t

∑
g∈{A,B}

s̃g,v

s̃g,v + f̃g,v
δg,v

∣∣∣∣s̃A,t = sA, f̃A,t = fA, s̃B,t = sB, f̃B,t = fB


where Π is the family of all allocation policies that assign one group to each patient
and δg,v is the indicator variable of patient v for group g (e.g. if patient 8 is allocated
group A, then δA,8 = 1, δB,8 = 0). This problem can be solved using standard dynamic
programming techniques such as backward induction or the Whittle index (Sutton and
Barto, 2018), and the exact algorithm formulations, denoted by DP, can be found in
Appendix A.1 of Williamson et al. (2017).

3.2 Optimal Design via Constrained Randomised DP

As noted in Villar et al. (2015), the above algorithm is completely deterministic and
will have low statistical power. Neither of the two properties is good, and therefore
Williamson et al. (2017) proposed an alternative reward for the dynamic programming
by adding randomness into the allocation rule, as well as constraining via penalising
allocating fewer patients than a predetermined threshold. This algorithm is denoted
as CRDP as it is derived by considering a constrained randomised dynamic program.

To be slightly more specific, when we choose to allocate a group A (or B) to a patient,
the randomness in allocation will mean that the patient will be allocated to A (or B)
with probability p and to B (or A) with probability 1− p. Note that p = 1 yields the
design in Section 3.1. The added penalty in the reward is made to ensure that at least
a predetermined m number of patients are allocated to each of the two groups. For the
value function that represents the reward, a very large M would be deducted from it if
the policy considered does not have m patients in each of the two groups, which would
imply that no such policy would be considered in the dynamic programming. The full
algorithm is omitted here due to the length constraint of this report, and interested
readers are referred to Sections 2.2 and 2.3 of Williamson et al. (2017).

3.3 Performance Assessments and Numerical Comparisons

The main features of the ECMO trial can be summarised as: (1) the difference in
allocated group sizes |#C − #T | is too big, (2) the number of patients allocated to
the better arm is high. The first point can be viewed as a criticism, while the second
point can be a compliment. Recall the ethical dilemma of a clinical trial, the first
point shows a lack of collective benefit while the second point shows an emphasis on
individual benefits. A more well-rounded assessment set of metrics is thus needed
for better comparisons of allocation rules. In Robertson et al. (2023), the authors
proposed a list of metric groups:
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• Testing metrics (e.g. type 1 error, power)
• Estimation metrics (e.g. bias, variance, MSE)
• Patient benefit metrics (e.g. proportion of allocations to the best arm).

Here, we will compare the two algorithms of Sections 3.1 (DP) and 3.2 (CRDP),
as well as the RCT using a few performance assessments for a more well-rounded
comparison. The simulation2 would be done on a trial with 100 patients, and the true
success probabilities θA and θB of group A and B are set to be (0.2, 0.7), (0.4, 0.7),
and (0.6, 0.7). This is to consider a range of scenarios. The hypothesis test of the trial
is θA − θB = 0 against its complement. The performance metrics are the test power
of the algorithm using Fisher’s exact test with p-value cutoff at 0.1, the MSE of the
estimator for θA − θB using sample proportions, and the proportion of allocation to
the best (better) arm - each from one of the three groups of metrics above. The results
obtained from 1000 Monte Carlo iterations are summarised in the following plots.

Figure 1: Simulation Results for Varying θA with 1000 Monte Carlo Iterations

It is clear that the RCT has good estimation and testing properties, but is bad at
providing patient benefits. On the other hand, DP provides a significant amount of
patient benefits, yet scores low on estimation and testing metrics. The CRDP sits
right in the middle, as designed.

4 Summary

Overall, we have looked at a few response-adaptive randomisation (RAR) rules/algorithms
and made critical evaluations and comparisons, as well as drawing their links to the
multi-armed bandit problem. We have explored some of the main reasons why RAR
rules are not used regularly in practice, and several further methodological works that
aimed to develop better rules which could serve as the randomisation rules for certain
types of clinical trials, such as those for rare diseases where there are a limited amount
of potential patients or those where failed treatments could be detrimental.
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