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Preface

Gradient flow has been an emerging topic in the field of computational statistics and machine
learning. The topic of gradient flow initially started as a tool in optimal transport to study certain
PDEs and the movements of distributions but has been adapted to study topics in statistical
learning in recent years. Gradient flow has many applications in statistical learning, especially in
designing and understanding optimisation and sampling algorithms such as the Langevin Monte
Carlo and Stein Variational Gradient Descent. Albeit a large volume of research output in this
area, the existing pedagogical material for gradient flow for statistical learning alternates between
(very good!) tutorial slides and videos for machine learning conferences and chapters from a
rather dense textbook on sampling or optimal transport. A middle ground is missing, and this
note aims to fill that gap by providing a sufficiently technical expository (with few prerequisites)
to gradient flow in statistical learning that should hopefully provide enough background material
to understand the most recent advances in this growing field.

This note introduces the idea of gradient flow, in both the Euclidean space and the Wasserstein
space. Gradient flow is an ODE that continuously minimises some function of interest, and it
has been employed increasingly in statistical learning as a theoretical tool to understand many
sampling and optimisation algorithms such as gradient descent and Langevin Monte Carlo. In
Chapter 1, we introduce gradient flow in the Euclidean space setting and draw connections
to common optimisation algorithms such as gradient descent and proximal point algorithm.
Theoretical analyses of gradient flow are included as well, although they shed limited light on its
discrete-time counterparts. In Chapter 2, the topic of optimal transport is described to motivate
things such as the Kantorovich problem, Wasserstein distance, and the Wasserstein space. This
gives us a suitable space and geometry to establish the gradient flow of probability distributions.
We also draw links between the Langevin diffusion and the gradient flow in Wasserstein space,
which is a key motivation for people to pay attention to this topic of gradient flow in Wasserstein
space. Finally, in Chapter 3, we look at various popular sampling algorithms and indicate that
they are indeed gradient flow in disguise, and how this revelation could help us understand these
algorithms better theoretically.

Lastly, I would like to thank Chris Nemeth for the guidance and help he provided with writing
this note.

Lancaster, UK
March, 2024
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Chapter 1

Gradient Flow in Euclidean Space

In this chapter, we will look at the concept of gradient flow in Euclidean space, and how some
common (convex) optimisation algorithms can be viewed as time-discretisations of them. Some
of the material in this chapter is based on Santambrogio (2017).

1.1 Introducing Gradient Flow

Consider an objective function F : Rn → R that is sufficiently smooth (e.g. ∇F is Lipschitz
continuous), and we wish to minimise F (and find the minimiser). This is one of the most fun-
damental questions in optimisation and Statistics. Mathematically, the problem can be written
as minx F (x).

One could consider the following ODE{
ẋ(t) = −∇F (x(t))

x(0) = x0
(1)

where t > 0 and x0 ∈ Rn would be an arbitrary initial position. This ODE is called the gradient
flow, as we have x(t) flowing smoothly towards the bottom of F using its gradient information.
This is a well-defined difference equation under some smoothness condition of F , like when ∇F
is Lipschitz continuous, and the existence and uniqueness of a solution are provided by the
Cauchy-Lipschitz theorem (Arnold, 1992).

Intuitively speaking, the trajectory of F (x(t)) will always be towards the steepest decrease in
the value of F , and we would assume (and it is true) that we would eventually reach the global
minimum of F under some regularity condition of F . For the rest of this section, we will formally
establish these results.

First, we will show that the gradient flow is decreasing the objective function. We have, using
equation (1),

d

dt
F (x(t)) = ∇F (x(t))T

dx(t)

dt
= −∇F (x(t))T∇F (x(t)) = −∥∇F (x(t))∥22 ≤ 0, (2)

as desired.
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Next, we will establish the convergence of the gradient flow solution assuming certain conditions
on F . Naturally, F (x(t)) could become periodic and never converge, so convergence does not
always hold. We will show the convergence of F (x(t)) for m-strongly convex1 F and for convex2

F . As the name might suggest, m-strongly convex is a stronger condition than merely convex.
For example, f(x) = e−x is convex, yet it is decaying too slowly for x→ −∞ for it to be strongly
convex.

Proposition 1.1. The gradient flow with F being m-strongly convex converges, in the sense that
for solution x(t), limt→∞ F (x(t)) exists.

Proof. For m-strongly convex F , we have

min
y
F (y) − F (x) ≥ min

y
∇F (x)T (y − x) +m/2∥y − x∥22

where F ∗ = miny F (y) and x∗ = arg miny F (y). Since F is convex, x∗ is a global and local
minima of F although it may not be unique. To minimise the RHS of the above inequality, we
take the partial derivation with respect to y and have

∂

∂y
∇F (x)T (y − x) +m/2∥y − x∥22 = ∇F (x) +m(y − x) = 0

so we should set y = x−∇F (x)/m. Substituting this value gives us

F ∗ − F (x) ≥ −∇F (x)T∇F (x)/m+m/2∥∇F (x)/m∥22 = −∥∇F (x)∥22/(2m)

which is called the Lojasiewicz inequality (Karimi et al., 2016). Next, recalling equation (2), and
we have

d

dt
F (x(t)) = −∥∇F (x(t))∥22

−∥∇F (x(t))∥22 ≤ −2m[F (x(t)) − F ∗].

Combining them gives us

d

dt
F (x(t)) ≤ −2m[F (x(t)) − F ∗]

d

dt
[F (x(t)) − F ∗] ≤ −2m[F (x(t)) − F ∗]

d

dt
log[F (x(t)) − F ∗] ≤ −2m

F (x(t)) − F ∗ ≤ e−2mt[F (x(0)) − F ∗]

where the final step is derived from integrating both sides of the inequality from 0 to t. So,
we have established the (geometric) convergence of the gradient flow when F is m-strongly
convex.

Proposition 1.2. The gradient flow with F being convex converges, in the sense that for solution
x(t), limt→∞ F (x(t)) exists.

1F is m-strongly convex if F (y)− F (x) ≥ ∇F (x)T (y − x) +m/2∥y − x∥22 for any x, y.
2F is convex if F (y)− F (x) ≥ ∇F (x)T (y − x) for any x, y.
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Proof. For convex F , we have F (x∗) − F (x(t)) ≥ ⟨−∇F (x(t)), x(t) − x∗⟩. We then have

d

dt
∥x(t) − x∗∥22 = ⟨2(x(t) − x∗),

d

dt
x(t)⟩

= 2⟨x(t) − x∗,−∇F (x(t))⟩
≤ 2(F ∗ − F (x(t))) = −2(F (x(t)) − F ∗).

Reorganising the inequality gives us

F (x(t)) − F ∗ ≤ −1

2

d

dt
∥x(t) − x∗∥22∫ t

0

F (x(u)) − F ∗du ≤ −1

2

∫ t

0

d

du
∥x(u) − x∗∥22du∫ t

0

F (x(u))du− tF ∗ ≤ −∥x(t) − x∗∥22/2 + ∥x(0) − x∗∥22/2 ≤ ∥x(0) − x∗∥22/2

1

t

∫ t

0

F (x(u))du− F ∗ ≤ 1

2t
∥x(0) − x∗∥22.

Next, as we have shown from earlier that F (x(t)) is decreasing in t, we have

F (x(t)) − F ∗ ≤ 1

t

∫ t

0

F (x(u))du− F ∗ ≤ 1

2t
∥x(0) − x∗∥22

and therefore we have established the convergence of gradient flow for convex F .

Note that in the first part of the above proof we have established the result

d

dt
∥x(t) − x∗∥22 ≤ −2[F (x(t)) − F ∗].

This result, which assumes the function F of the gradient flow is convex, is known as the evo-
lution variational inequality (EVI). This is a fundamental inequality, as one could in fact
derive the gradient flow ODE with only this result, albeit it does not involve ∇F .

1.2 Discretisations of Gradient Flow

In the previous section, we looked at gradient flows in the Euclidean space. Gradient flow is
an ODE that moves towards the minimum of an objective function F in continuous time. As
minimisation (and equivalently maximisation) is often a task that we wish to conduct numerically,
we could not (as of now) do so continuously using computers without some discretisation, except
for the rare occasions when a closed form expression exists. In this section, we will look at
two ways one could discretise the gradient flow in time to obtain implementable discretisation
schemes.

Given an ODE, the easiest time-discretisation is the Euler method in Numerical Analysis
(Burden and Faires, 2011), and the two optimisation algorithms below are essentially the explicit
and implicit Euler method discretisations of the gradient flow.

The explicit Euler method applied to the gradient flow (1) with step size h will give the following
output {xk}k∈N:

x0 = x0, xk = xk−1 − h∇F (xk−1) for k = 1, 2, . . . .
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This is the standard version of gradient descent that minimises a (differentiable) function
F . There are variants of gradient descent that either use varying step size rather than fix (e.g.
adaptive gradient descent), or use an unbiased estimate of ∇F at each iteration (e.g. stochastic
gradient descent).

It is not hard to notice that the gradient descent will not guarantee to converge to the minimum
of F , unlike the gradient flow. However, it is still reasonably good for small step sizes, and its
simple formulation makes it easy to implement, which is why gradient descent is one of the most
commonly used algorithms in optimisation. The theory behind gradient descent, such as its
convergence with sufficiently small step size and the rates of convergence, will be omitted here,
and they could not be derived from results about gradient flow.

The implicit Euler method applied to the gradient flow{
ẋ(t) = −∇F (x(t))

x(0) = x0

with step size h will give the following output {xk}k∈N:

x0 = x0, xk = xk−1 − h∇F (xk) for k = 1, 2, . . . .

This version is not exactly helpful, as if we are trying to run the optimisation, we would not be
able to update xk as it is defined using ∇F (xk). We can instead transform it and get

xk − xk−1

h
= −∇F (xk)

xk − xk−1

h
+ ∇F (xk) = 0

d

dxk

[
∥xk − xk−1∥22

2h
+ F (xk)

]
=
xk − xk−1

h
+ ∇F (xk) = 0.

So, as F is assumed to be convex, xk would be the minimiser of F (x) + ∥x− xk+1∥22/(2h), and
this becomes more feasible. Thus, the discretisation will yield the following output {xk}k∈N:

x0 = x0, xk ∈ arg min
x
F (x) +

∥x− xk−1∥22
2h

= proxhF (xk−1) for k = 1, 2, . . .

and this gives us the proximal point algorithm.

The above derivation assumes F to be differentiable, which is not exactly needed for the proximal
point algorithm using the arg min formulation. This algorithm uses the implicit Euler method,
which is a more accurate discretisation scheme of the ODE, and thus would yield a better
convergence. The exact theoretical justifications would be omitted here as well.

Currently, we cannot see much power of gradient flow, as for now, it is merely a neat way to
unify various optimisation schemes while not providing much help with the theories. In the next
chapter, we will look at gradient flows in Wasserstein space (instead of Euclidean space) which
are far more powerful.
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Chapter 2

Gradient Flow in Wasserstein
Space

In this chapter, we will introduce and describe some basic results of optimal transport that allow
us to formalise the notion of the Wasserstein distance, which is essential for our construction of the
Wasserstein space. Next, we study a few key properties and structures of the Wasserstein space,
such as its metric structure and its Riemannian structure. They will help us establish the notion
of gradient flow in the Wasserstein space. Then, we will look at how one could view sampling as
optimisation by minimising the KL divergence, and we derive the Wasserstein gradient flow of
KL divergence, which has an amazing connection with the Langevin diffusion. Finally, we will
study the discretisations of the Wasserstein gradient flow, as well as some convergence properties
related to them. This chapter is based on Chapters 1.3 and 1.4 of Chewi (2023).

2.1 A Brief Introduction to Optimal Transport

The study of optimal transport (OT) started with finding the optimal way of transporting and
allocating resources first proposed in Monge (1781), which is commonly known as the Monge
problem. The Monge problem considered two probability densities f, g defined on Rd and aims
to look for a map T : Rd → Rd that pushes f to g in the sense that∫

A

g(x)dx =

∫
T−1(A)

f(y)dy

for all Borel subsets A ⊆ Rd and T minimises the cost∫
Rd

∥T (x) − x∥2f(x)dx = EX∼f [∥T (X) −X∥2] .

For the special case of d = 1 and f, g both being histograms, the problem can be intuitively
thought of as transporting one pile of books (with relative numbers of books at each location
following f) to a different configuration of arranging the books in a pile following g. For example,
f could be putting half of the books at location 1 and the other half at location 2(f : 1 7→ 1/2, 2 7→
1/2), while we would want to transform that into putting all the books at location 2 (g : 2 7→ 1),
which could be solved by simply shifting all the books at location 1 to 2. However, if the target
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configuration is putting half of the books at location 1, but a quarter of the books at location 2
and new location 3, a transportation mapping would not exist as we are not allowed to half (or
divide a whole into any proportions) the books at location 2. Even in this simple setting, it is
not hard to notice that the Monge problem does not always have a solution.

At this stage, we would define the notion of a push forward. Consider measures µ on X and a
measurable map T : X → Y . We have the push forward of µ by T , which we denote by T#µ,
as a measure on Y defined by

T#µ(A) = µ(T−1(A))

for all measurable subsets A of Y , and∫
Y

ϕ d(T#µ) =

∫
X

ϕ ◦ Tdµ

for all measurable functions ϕ on Y .

As we have mentioned using the book re-configuration example, the Monge problem does not
always have a solution. One of the main problems is that we are not allowed to break a whole into
portions. This restriction is relaxed by Kantorovich, and this relaxation of the Monge problem
is known as the Kantorovich problem (Kantorovich, 2006) which we state below.

Consider the cost function c : X ×X → [0,+∞] that is continuous and symmetric, denoted by
the optimal transport cost. Given two probability measures µ, ν ∈ P(X)1, the Kantorovich
problem is

inf
γ∈Π(µ,ν)

∫
X×X

c(x, x′) dγ(x, x′)

where Π(µ, ν) = {γ ∈ P(X×X) | (π1)#γ = µ, (π2)#γ = ν} where π1, π2 are projections onto the
first and second coordinate. The set Π is the collection of couplings between µ and ν that takes
µ and ν marginally. The minimiser of the Kantorovich problem is called the optimal transport
plan.

It is not hard to notice that if we set c to be the Euclidean distance, then the Monge problem
considers the transportations that are couplings of µ, ν = T#µ, which are contained in Π. So,
the Kantorovich problem is a weaker problem than the Monge problem. The Monge problem
does not always have a solution, but it can be shown that when the optimal transport cost c is
lower semicontinous2, there always exists an optimal transport plan (Ambrosio et al., 2005).

2.1.1 The p-Wasserstein Distance

The objective function in the Kantorovich problem is a way to measure the distance between
two probability densities µ, ν via some cost function c. In the case where c is the lp distance, the
objective function is called the p-Wasserstein distance, denoted by Wp defined by

Wp
p (µ, ν) := inf

γ∈Π(µ,ν)

∫
X×X

∥x− y∥pp dγ(x, y).

and we will define the p-Wasserstein distance on the space Pp(Rd) defined by

Pp(Rd) :=

{
µ ∈ P(Rd)

∣∣∣∣∣
∫

|x|p2dµ(x) <∞

}
.

1P(X) denotes the set of probability measures defined on X.
2f is lower semicontinuous at x′ if for any ε, there exists δ > 0 such that f(x′)− ε < f(x) for all δ ball of x′.

If f is lower semicontinuous everywhere, the function is lower semicontinuous.
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Another way to measure the distances between two densities (and functions) is via the Lp dis-
tance, defined by

∥f − g∥p :=

∫
X

∥f(x) − g(x)∥pdx.

They are, obviously, not the same, as illustrated roughly in Figure 1.

Figure 1: Comparison of Lp distance and Wp distance via transport map T , adapted from
Santambrogio (2017).

In the rest of the notes, we will focus on the special case where p = 2 due to the various nice
properties of P2 and W2 that we will explore next.

2.2 Dual and Solution to the Kantorovich Problem

So far, all we have considered is the solution to the Kantorovich problem and that its solution
exists when the cost function is lower semicontinuous (and lp cost functions are all lower semi-
continuous). We have not investigated how one could compute a solution to the problem, which
is often of more practical interest than knowing merely the existence of a solution. We will
look more into the solution of the Kantorovich problem with W2 cost using the duality of the
Kantorovich problem.

We will focus on the objective function W2
2/2 as it is nicer to work with. First, the marginal

condition for the coupling could be rewritten as follows:

(π1)#γ = µ ⇐⇒
∫
f(x)dγ(x, y) =

∫
f(x)dµ(x) ∀f ∈ L1(µ) =

{
h ∈ L(Rd) |

∫
|h|dµ <∞

}
3

and

(π2)#γ = ν ⇐⇒
∫
g(y)dγ(x, y) =

∫
g(y)dν(y) ∀g ∈ L1(ν) =

{
h ∈ L(Rd) |

∫
|h|dν <∞

}
.

3L(Rd) is the set of Lebesgue measurable functions on Rd.
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This allows up to rewrite W2
2/2 using sup:

1

2
W2

2 (µ, ν) =
1

2
inf

γ∈Π(µ,ν)

∫
∥x− y∥22dγ(x, y)

=
1

2
inf

γ∈M+(Rd×Rd)
sup

f∈L1(µ),g∈L1(ν)

[∫
1

2
∥x− y∥22dγ(x, y)

+

∫
fdµ−

∫
f(x)dγ(x, y) +

∫
gdν −

∫
g(y)dγ(x, y)

]

=
1

2
sup

f∈L1(µ),g∈L1(ν)

inf
γ∈M+(Rd×Rd)

[∫
1

2
∥x− y∥22 − f(x) − g(y)dγ(x, y)

+

∫
fdµ+

∫
gdν

]

=
1

2
sup

(f,g)∈D(µ,ν)

[∫
fdµ+

∫
gdν

]
where M+(Rd × Rd) is the space of non-negative finite measures on Rd × Rd, and D(µ, ν) is
defined as

D(µ, ν) :=

{
(f, g) ∈ L1(µ) × L1(ν) | f(x) + g(y) ≤ 1

2
∥x− y∥22 ∀x, y ∈ Rd

}
(3)

which is the set of f, g pairs that make the infimum of the integral zero rather than −∞, i.e.

inf
γ∈M+(Rd×Rd)

∫
1

2
∥x− y∥22 − f(x) − g(y)dγ(x, y) =

{
0 (f, g) ∈ D(µ, ν),

−∞ otherwise.

The maximisers of the dual problem f, g are known as the dual potential. Therefore, we have
turned the Kantorovich from an infimum problem to a supremum problem, and thus we have
obtained the dual problem: Let µ, ν ∈ P2(Rd). the dual Kantorovich problem from µ to ν
is the optimisation problem

sup
(f,g)∈D(µ,ν)

[∫
fdµ+

∫
gdν

]
where D is the same as (3).

The following result summarises the key properties of the dual (and primal) problem. The proofs
are omitted due to length constraints, and interested readers can find them at Ambrosio et al.
(2005).

Theorem 2.1 (Fundamental Theorem of Optimal Transport). Consider two densities µ, ν ∈
P2(Rd). Then, we have:

1. (strong duality) The value of the dual Kantorovich problem from µ to ν equals to W2
2 (µ, ν)/2.

2. (existence of optimal dual potential) There exists an optimal pair (f∗, g∗) for the dual
Kantorovich problem.

3. (optimal dual potential characterisation) The optimal pair is of the form

f∗(x) = ∥x∥22/2 − φ(x), g∗(y) = ∥y∥22/2 − φ∗(y)
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where ϕ : Rd → R ∪ {+∞}, called the Kantorovich potential, is a proper, convex, lower
semicontinuous function and φ∗ is its convex conjugate4.

4. (Brenier Theorem) If µ is also absolutely continuous w.r.t. the Lebesgue measure5, then the
optimal transport plan is unique and it is induced by an optimal transport map T , i.e.
for the optimal transport plan (µ∗, ν∗), we have ν∗ = T#µ∗ . Furthermore, the mapping T
is characterised by the unique gradient of a proper, convex, lower semicontinuous function
φ, called the Brenier potential, such that T = ∇φ and (∇φ)#µ∗ = ν∗.

The Brenier theorem indicates that under certain conditions on µ, ν, the optimal solution to the
Kantorovich problem is the same as that of the Monge problem. Furthermore, in those cases,
the solution can be captured by the optimal transport map, which is then characterised by the
Brenier potential. In addition, using convex duality, ∇φ∗ = (∇φ)−1. So, if ν is also absolutely
continuous, then the optimal transport map from ν to µ would be ∇φ∗. We would commonly
denote the optimal transport map from µ to ν as Tµ→ν for simplicity. Also, as absolutely
continuous measures are very convenient to work with, we will restrict our attention to those
only, meaning that we will consider the space of absolutely continuous probability measures
P2
ac(Rd) ⊂ P2(Rd) instead.

2.3 2-Wasserstein Space and its Metric and Riemannian
Structure

In the previous section, we have established some fundamental results of optimal transport and
the Kantorovich problem when the cost function is chosen to be W2. This cost function, as it
turns out, can be used as a metric on the space of probability measures P2(Rd). This space
is commonly called the 2-Wasserstein space. Furthermore, it also possesses a Riemannian
structure. These two key properties allow us to study the motion of probability measures and
provide a sensible notion of gradient in this space, which would be fundamental in the next
section when we establish the Wasserstein gradient flow.

2.3.1 2-Wasserstein Space is a Metric Space

First, we will establish that the 2-Wasserstein space is indeed a metric space.

Proposition 2.2. (P2(Rd),W2) is a metric space.

Proof. We would like to show that W2 is indeed a metric on P2(Rd). The first two properties of a
metric are trivial to show. Firstly, W2 is non-negative by definition as the l2 norm is non-negative,
and is symmetric for the same reason. Also, when µ = ν a.e., we would have W2(µ, µ) = 0 by
using the trivial coupling of product measure µ⊗ µ. Conversely, if W2(µ, ν) = 0, we would have
∥X−Y ∥ = 0 a.s. by coupling γ, so X = Y a.s. and thus µ = ν. We are now left with establishing
the triangle inequality of W2.

An auxiliary lemma is needed here: for γ1,2 ∈ P2(X × Y ) and γ2,3 ∈ P2(Y × Z) with the same
marginal distributions on Y , there exists γ1,2,3 ∈ P2(X×Y ×Z) such that its marginal on X×Y
is γ1,2 and its marginal on Y × Z is γ2,3. A proof of this can be found in Berti et al. (2015).

4φ∗ is the convex conjugate of φ if we have φ∗(y) = supx∈Rd [⟨x, y⟩ − φ(x)].
5A measure µ is absolutely continuous w.r.t. the Lebesgue measure λ if for any measurable subset A, we have

λ(A) = 0 =⇒ µ(A) = 0.
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Consider µ1, µ2, µ3 ∈ P2(Rd), we let γ1,2 be the optimal coupling of µ1, µ2 in terms of W2 and
γ2,3 be the optimal coupling of µ2, µ3 in terms of W2. By the lemma above, there exists γ that
glues up γ1,2 and γ2,3, and we let γ1,3 denote the marginal of γ on the first and third coordinates.
Then, we have

W2(µ1, µ3) =

√∫
∥x1 − x3∥22dγ1,3(x1, x3)

≤

√∫
∥x1 − x2∥22 + ∥x2 − x3∥22dγ(x1, x2, x3)

≤

√∫
∥x1 − x2∥22dγ(x1, x2, x3) +

√∫
∥x2 − x3∥22dγ(x1, x2, x3)

=

√∫
∥x1 − x2∥22dγ(x1, x2) +

√∫
∥x2 − x3∥22dγ(x2, x3)

= W2(µ1, µ2) + W2(µ2, µ3)

as desired.

Knowing the metric space structure, we could study the dynamics of elements in the space,
which are probability measures in this case. This would serve as a key component when we
study gradient flow in Wasserstein space in the next section.

Consider a curve t 7→ µt ∈ P2,ac(Rd), we say the curve is absolutely continuous if for all t,

|µ̇|(t) := lim
s→t

W2(µs, µt)

|s− t|
<∞.

We would also call |µ̇| the metric derivative of the curve. This notion of derivative would help
us to view the movement of measures as flows of fluid, which then would allow us to establish
the continuity equation. The flows of fluid can be interpreted via the Lagrangian lens and via
the Newtonian lens, where the Lagrangian viewpoint focuses on the trajectory of the particles
and the Newtonian viewpoint focuses on the evolution of fluid density.

Suppose that X0 ∼ µ0 and t 7→ Xt evolves according to some ODE Ẋt = vt(Xt) for vector field
family (vt). The ODE describes the motion of particle trajectories and thus is the Lagrangian
viewpoint of the motion.

Correspondingly, we could have the following evolution equation to represent the Newtonian
perspective.

Theorem 2.3. Let t 7→ vt be a family of vector fields such that the random variables t 7→ Xt

evolve according to Ẋt = vt(Xt). Then, the law µt of Xt evolves according to the continuity
equation

∂tµt + div(µtvt) = 0.
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Proof. Given any test function φ : Rd → R, we have∫
φ∂tµt = ∂t

∫
φdµt = ∂tE[φ(Xt)]

= E[⟨∇φ(Xt), Ẋt⟩] = E[⟨∇φ(Xt), vt(Xt)⟩]

=

∫
⟨∇φ, vt⟩dµt = −

∫
φdiv(µtvt)

and that gives us the desired continuity equation as it holds for any φ.

The interpretation of this result is that, for any nice curve of measures t 7→ µt, we can interpret
it as a fluid flow along a family of vector fields, although this family of fields is not necessarily
unique as we can add an additional vector field (wt) to any feasible (vt) as long as div(vtwt) = 0.
We will then look for the optimal choice of family.

The first thing we want our vector field (vt) to have is that we want it to minimise
∫
∥vt∥22dµt

which can be interpreted as the kinetic energy. Next, we would like vt to be the gradient of
some function, as that would make it more natural to characterise optimal transport maps. The
following result summarises them and establishes the choice of the optimal family of vector fields.
The proof is omitted here but could be found in Chewi (2023) as Theorem 1.3.19.

Theorem 2.4 (curves of measures as fluid flows). Let t 7→ µt be an absolutely continuous curve
of measures. We have

1. For any family of vector fields t 7→ ṽt satisfying the continuity equation, we have |µ̇|(t) ≤
∥ṽt∥L2(µ(t)) for all t.

2. Conversely, there exists a unique choice of vector fields t 7→ vt such that the continuity
equation holds and ∥vt∥L2(µ(t)) ≤ |µ̇|(t) for all t. The choice of vector fields is also charac-

terised by the fact that the continuity equation holds for some function ψt : Rd → R with
vt = ∇ψt for all t.

Furthermore, the optimal vector field (vt) produced by the two results above satisfies

vt = lim
δ↘0

Tµt→µt+δ
− id

δ

where Tµt→µt+δ
is the optimal transport from µt to µt+δ, and id is the identity map where

id#µ = µ for any µ.

As a consequence of this result, the optimal vector field vt would satisfy ∥ṽt∥L2(µ(t)) ≤ |µ̇|(t).
The metric derivative is supposed to be the “magnitude of the velocity”.

2.3.2 2-Wasserstein Space and Riemannian Structure

So far, we have established the metric space structure of the 2-Wasserstein space. Next, we
will move on to study the Riemannian structure of the same space. One major motivation for
introducing some geometry into the space is that, since we have established some nice forms of
curves, we would like to know about geodesics (shortest distance paths).

Before indicating the Riemannian structure of the Wasserstein space, we will first give a quick
and informal description of Riemannian geometry and describe what a Riemannian manifold
is.

13



A (smooth) manifold M can be defined as a space that is locally homeomorphic6 to some
Euclidean space Rn, and such a manifold would then be of dimension n. For example, a circle
S1 embedded in R2 with only the circumference and no filling is locally homeomorphic to R1.
If we zoom into one point on the circumference of the circle and enlarge everything, we would
get something that is very close to a straight line. Therefore S1 is of dimension 1, and thus the
superscript 1. Using a similar logic, the sphere S2 embedded in R3 (e.g. a round version of the
Earth) is locally homeomorphic to R2, and walking on Earth would feel like walking on flat land
although the Earth itself is round7. Given a manifold M, we can associate any point p ∈ M
to a vector space TpM of all possible velocities of curves passing through p, and we call such a
space the tangent space at p.

Figure 2: Tangent Space TxM of manifold M at point x. Taken from Wikipedia.

A Riemannian metric is a smoothly varying choice of inner products p 7→ ⟨·, ·⟩p on the tangent
space. This metric allows us to locally measure things such as the angles between two intersecting
curves. In the context of gradient flow, this notion allows us to define the steepest descent
direction for an objective function. Given a Riemannian metric, we can induce a distance function
as

d(p, q) := inf

{∫ 1

0

∥γ̇(t)∥γ(t)dt

∣∣∣∣∣ γ : [0, 1] → M, γ(0) = p, γ(1) = q

}
where γ̇(t) is the tangent vector to the curve γ at time t (note that this vector does not live on
the manifold M but the tangent space Tγ(t)M). The norm is w.r.t. the inner product on the
tangent space Tγ(t)M. The minimiser of the above infimum, if it exists, would be the geodesic
curve γ. If in addition, speed of the curve ∥γ̇(t)∥γ(t) is constant for all t, the geodesic is called
a constant-speed geodesic, and this will be the only type of geodesics we care about for the
rest of the notes, and we will drop the prefix and call them only geodesics for simplicity.

Given a functional F : M → R, the gradient of F at p is defined to be the unique element
∇F (p) ∈ TpM such that all curves (pt) passing through p at time 0 with speed v ∈ TpM satisfy
∂tF (pt)|t=0 = ⟨∇F (p), v⟩p. This will be key to the construction of gradient flow in Wasserstein
space.

A manifold M equipped with a Riemannian metric is thus known as a Riemannian manifold.
We will show next that the 2-Wasserstein space is a Riemannian manifold.

6A function f : X → Y is a homeomorphism if f is a continuous bijection and the inverse is also continuous. If
there exists a homeomorphism between spaces X and Y , then we say the two spaces are homeomorphic. A space
X is locally homeomorphic to space Y if every point of X has a neighbourhood that is homeomorphic to an open
subset of Y .

7at least to the non-believers of a flat Earth ...
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The space of interest is the space of absolutely continuous probability measures with finite
variances defined on Rd, i.e. the space P2,ac(Rd). To define the tangent space for any µ ∈
P2,ac(Rd), we have

TµP2,ac(Rd) := {∇ψ | ψ ∈ C∞
c (Rd)}

L2(µ)

where the overline denotes the L2(µ) closure8 and C∞
c (Rd) is the space of compactly supported9,

smooth functions defined on Rd. Using Theorem 2.4 about the optimal transport map, we can
rewrite the tangent space as

TµP2,ac(Rd) := {λ(T − id) | λ > 0, T is an optimal transport map}
L2(µ)

.

We can equip this Riemannian metric with the L2 norm to the space P2,ac(Rd). For this space
to be a Riemannian manifold, we need to show that P2,ac(Rd) is a manifold, which it is not.
Nevertheless, we can still make use of the Riemannian structure of this space. To make a better
connection with the 2-Wasserstein distance, we would want to show that the distance induced
by the metric coincides with W2, and we would also want to know what a geodesic would look
like in this case. These two points are illustrated in the following theorem. The proof is omitted
as usual, and a detailed proof can be found in Chewi (2023) as Theorem 1.3.22.

Theorem 2.5 (Wasserstein geodesics). Let µ0, µ1 ∈ P2,ac(Rd). Then,

W2(µ0, µ1) := inf

{∫ 1

0

∥vt∥L2(µt)dt

∣∣∣∣∣∂tµt + div(µtvt) = 0

}
.

The minimiser of the above infimum can be achieved as follows: let X0 ∼ µ0 and X1 ∼ µ1 be
optimally coupled and let Xt := (1 − t)X0 + tX1, and let µt := L(Xt) be the law of the random
variable at time t. Then, t 7→ µt is the unique constant-speed geodesic joining µ0 to µ1.

The minimising curve is called the Wasserstein geodesic joining µ0 to µ1, and it is also
called the displacement interpolation or McCann interpolation. If there exists an optimal
transport map T between µ0 and µ1, then the geodesic would be of the form

µt = ((1 − t)id + tT )#µ0

for t ∈ [0, 1]. One should note that this is certainly different from the linear/mixture interpolation
between µ0 and µ1, which is of the form

µt := (1 − t)µ0 + tµ1

for t ∈ [0, 1]. The two forms of interpolations are graphically compared below.

2.4 Wasserstein Gradient Flow and Sampling

In this section, we will finally show how one could define a gradient flow in the Wasserstein
space, after an extended study of the basic properties of this space. The close connection be-
tween gradient flow in Wasserstein space and the Langevin diffusion would be illustrated, in the
sense that the Langevin diffusion could be viewed as a gradient flow in the Wasserstein space,

8The L2(µ) closure of a set includes all the elements of L2(µ) such that the (possibly) enlarged set would be
closed in L2(µ) w.r.t. to its topology.

9A function f defined on X is compactly supported if the subset of domain of f of which the image is non-zero
is compact, i.e. the set {u ∈ X | f(u) ̸= 0} is compact in X.
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Figure 3: Comparison of Wasserstein Interpolation and Mixture Interpolation (Korba and Salim,
2022)

first introduced in Jordan et al. (1998). Additionally, we would also draw connections between
sampling and optimisation, i.e. how certain sampling (from a distribution) techniques can be
viewed as optimisation of the right objective function. Further examples of using gradient flow
to study sampling algorithms will be introduced in the next chapter.

2.4.1 Wasserstein Gradient Flow

In the previous chapter, we looked at how one could define a gradient flow in the Euclidean space.
Here, we will look at the Wasserstein gradient flow - gradient flows defined in the Wasserstein
space (P2,ac(Rd),W2). This uses both the metric space structure and the Riemannian structure
of the Wasserstein space, as they help us understand how one could study the motion of objects
in the space (via the continuity equation) and how one could differentiate measures in the space
(via tangent spaces). Recall that we have the gradient flow in Euclidean space

ẋt = −∇F (xt)

for some (convex) function F and xt ∈ Rd. Trying to move things into the Wasserstein space
where elements are probability measures µt instead of vectors xt, we would want something like

µ̇t
?
= −∇W2

F (µt) (4)

for some functional F : P2,ac(Rd) → R∪{+∞}. The added subscript under the gradient operator
above is because the geometry of the Wasserstein space is different from that of the Euclidean
space, and the notion of gradient would require a slightly different form w.r.t. the right notion
of distance, which is W2 in our case.

The left-hand side of the equation (4) is relatively well-defined at this stage since we have already
studied the continuity equation for curves t 7→ µt. Therefore, we have

µ̇t = ∂tµt = −div(µtvt)

where vt is a family of vector fields. The choice of the family will become obvious soon, as we
would want to make it match with the right-hand side of the gradient flow.

Next, we will look at the right-hand side of the equation (4). Consider some functional F :
P2,ac(Rd) → R∪{+∞}, we would like to compute its gradient in the Wasserstein space at point
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µ, which really means that we want to find the element ∇F (µ) ∈ TµP2,ac(Rd) such that for any
curve t 7→ µt with µ0 = µ, we have

∂tF (µt)|t=0 = ⟨∇W2F (µ), v0⟩µ

for the tangent vector v0 of the curve at time 0 with ⟨·, ·⟩µ being the inner product of the tangent
space TµP2,ac(Rd). We will give a formula for this quantity using the first variation of F at µ,
which we will denote as δF (µ) and is defined to satisfy

∂tF (µt)|t=0 =

∫
δF (µ)∂tµt|t=0.

Using the continuity equation, we then have

∂tF (µt)|t=0 =

∫
δF (µ)∂tµt|t=0 = −

∫
δF (µ)div(µv0) =

∫
⟨∇δF (µ), v0⟩dµ

for ∇ being the Euclidean gradient. Therefore, we have the Wasserstein gradient of the
functional F at µ to be defined as

∇W2
F (µ) = ∇δF (µ).

Now, combining what we have derived so far, we would have the Wasserstein gradient flow
of F is by definition a curve of measures t 7→ µt such that the tangent vector vt at time t is
vt = −∇W2

F (µt), which will then give us the gradient flow equation

∂tµt = div(µt∇W2F (µt) = div(µt∇δF (µt)).

2.4.2 Langevin Diffusion as Gradient Flow

Consider the functional F = KL(·|π) for some probability measure π and we wish to minimise
this quantity using Wasserstein gradient flow. Before going into setting up the gradient flow,
we first explore slightly the notion of KL divergence and why we would wish to minimise this
quantity.

The KL divergence KL(·|·) is a commonly used measure of distance between probability distri-
butions in Statistics and machine learning, defined as

KL(µ|ν) :=

∫
log

µ

ν
dµ

where µ, ν are probability measures and µ is absolutely continuous w.r.t. ν. One key property
of KL divergence is that

KL(µ|ν) ≥ 0

for any µ, ν, and KL(µ|ν) = 0 if and only if µ = ν as measures. This means

π = arg min
q∈Q

KL(q|π)

as long as π ∈ Q. This property leads to the study of variational inference (Blei et al., 2017),
where we try to learn about a complicated distribution π by optimising the KL divergence
between π and elements of a sufficiently large class of distribution Q. In practice, the class of
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distribution is usually assumed to be of some parametric form, such as the class of Gaussian
distributions with varying mean and variance parameters.

Another nice thing about KL divergence and the optimisation approach, especially in the case of
Bayesian computation, is that it will still work even if the probability measure could be known
up to a multiplicative constant, as we have, for constant C > 0,

KL(µ|Cν) =

∫
log

µ

Cν
dµ =

∫ [
log

µ

ν
− logC

]
dµ = KL(µ|ν) − logC

so doing the optimisation using KL(µ|Cν) with varying µ would yield the same result as opti-
mising KL(µ|ν).

KL divergence, in addition, can be used to do sampling. One (somewhat restrictive) way of
thinking about sampling from a target distribution π is that we wish to construct a distribution
of the form

πN :=
1

N

N∑
i=1

δxi

where x1, x2, . . . , xN are samples from π and δxi
is the Dirac point mass at xi. The πN distribu-

tion is essentially a histogram made by N samples from π. We wish to approximate π using πN
for a fixed N , and the closeness of the approximation can be measured by none other than the KL
divergence between them, i.e. KL(πN |π). Different choices of samples x1, x2, . . . , xN would then
influence the KL divergence, and the minimising set of samples would be the desired output of
the optimisation.10 Therefore, we have established one link between sampling and optimisation,
via minimising the KL divergence. This should provide sufficient reasons for constructing the
Wasserstein gradient flow using KL divergence.

Recall from the start of this subsection that we wish to minimise the function F = KL(·|π), and
we assume here that π ∝ exp(−V ) for some function V , often viewed as the potential energy
due to its connection with the Boltzmann distribution from statistical Physics (Faulkner and
Livingstone, 2022). Using this definition, we have

F (µ) =

∫
log

µ

π
dµ =

∫
logµdµ−

∫
(−V )dµ =

∫
V dµ+

∫
logµdµ

and the first term can be interpreted as the energy part, and the second can be viewed as the
(negative) entropy part. Using the definition of the first variation, we could have

δF (µ) = V + log µ+ constant

so the Wasserstein gradient of F becomes

∇W2F (µ) = ∇V + ∇ logµ = ∇ log
µ

π
.

The Wasserstein gradient flow of F that we wished for in equation (4), therefore, is

∂tµt = div
(
µt∇ log

µt

π

)
. (5)

10One should compare this approach to the more classical sampling approach via importance sampling, MCMC,
etc. For importance sampling and MCMC, for example, the idea behind them is that we first draw samples from
an easy-to-sample-from alternative distribution, and then correct the samples so that they become exact samples
from the target distribution. It should not be too hard to notice that the variational approach to sampling is
fundamentally different.
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Note that for the Langevin diffusion

dXt = −∇V (Xt)dt+
√

2dBt

with {Bt}t being a standard Brownian motion has the stationary distribution π ∝ exp(−V ), and
its Fokker-Planck equation is

∂tπt = L∗πt = div(πt∇ log πt/π) (6)

where πt is the law of Xt and L∗ is the adjoint of the infinitesimal generator of the Langevin
diffusion. More detail on the derivations of these results can be found in Oksendal (2013).

Comparing the Wasserstein gradient flow and the Fokker-Planck equation of the Langevin diffu-
sion, we can see that the law t 7→ πt of {Xt} from the Langevin diffusion with stationary
distribution π ∝ exp(−V ), provided by equation (6), coincides with the Wasserstein
gradient flow of KL(·|π) of equation (5). This amazing connection between gradient flow
and the Langevin diffusion was first drawn in Jordan et al. (1998).

2.5 Discretisations and Convergence Analysis of Wasser-
stein Gradient Flow

In Chapter 1, after introducing the gradient flow in the Euclidean space, we studied two ways of
discretizing the ODE (explicitly and implicitly) and studied some convergence rate results of the
gradient flow under varying convexity results of the objective function F . We will do the same
in this section with the Wasserstein gradient flow.

2.5.1 Time-Discretisation of Wasserstein Gradient Flow

Consider a functional F : P2,ac(Rd) → R and the Wasserstein gradient flow would be of the form

∂tµt = div(µt∇W2
F (µt)) = div(µt∇δF (µt)).

Using the explicit Euler discretisation of the above ODE, we would get the update scheme of the
form

µm+1 = µm − γ∇W2
F (µm)#µm

= (id − γ∇W2
F (µm))#µm

which is just pushing forward the current state µm along the Wasserstein geodesic with stepsize
γ > 0. In the case where F (µ) = KL(µ|π), we would have

∇W2F (µm) = ∇ log(µm/π)

in the update step, which involves the density of µm and this density is not always attainable.

Using the implicit Euler discretisation, which is the same discretisation used in Jordan et al.
(1998), we would get the update scheme of the form

µm+1 ∈ arg min
µ∈P2(Rd)

[
γF (µ) +

1

2
W2

2 (µ, µm)

]
using the proximal point ideas as mentioned in Chapter 1. Note that this involves minimising
over W2, which is very hard to compute in practice when the probability measures we use to
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compute are not of some very nice form. This makes this scheme, often called the JKO scheme,
impractical.

The direct approach of converting a continuous-time gradient flow to a discrete-time optimisation
using the Euler method is not feasible here. One potential way to work around it is via splitting
schemes, where at each full iteration, we do half a step of one update and half a step of another
update. This may sometimes bypass some implementation problems. Some examples of such
splitting schemes will be shown in Chapter 3.

2.5.2 Convergence Analysis of Wasserstein Gradient Flow

Now we shall switch focus back to the continuous time setting, and look at the various convexity
conditions of F = KL(·|π) under which the Wasserstein gradient flow would converge at certain
rates.

Consider the curves t 7→ µt in P2,ac(Rd) moving along the Wasserstein geodesic so there exists
an optimal transport map T such that µt = [(1 − t)id + tT ]#µ0

. We have

∂tF (µt) = ⟨∇W2
F (µt), T − id⟩µt

when we pick the optimal vector field T − id ∈ Tµ0P2,ac(Rd) as outlined in Theorem 2.4. Then,
by taking the second derivative, we have

∂2t F (µt)|t=0 = ⟨∇W2
F (µt)(T − id), T − id⟩µ0

since the acceleration term is zero due to the geodesic being of constant speed. If we can further
show that the above quantity has a lower bound α∥T − id∥2µ0

for any µ0 and T , then we have
established that F is α-strongly convex.

Theorem 2.6. For π ∝ exp(−V ) with α-strongly convex V , KL(·|π) along the Wasserstein
geodesic is α-strongly convex.

Proof. Consider π ∝ exp(−V ). We have

KL(µ|π) =

∫
log

µ

π
µ =

∫
logµdµ︸ ︷︷ ︸
=:H(µ)

+

∫
V dµ︸ ︷︷ ︸

=:E(µ)

where H(µ) is the negative entropy and E(µ) is the potential energy. Along the Wasserstein
geodesic, we have Xt = (1 − t)X0 + tT (X0) where X0 ∼ µ and T is the optimal transport map.

Studying the second derivative of F can be broken down into studying the second derivation of
H and E , which is what we are going to do here. First, we look at the derivatives of E . We have

∂tE(µt) = ∂tE[V (Xt)] = E[⟨∇V (Xt), Ẋt⟩] = E[⟨∇V (Xt), T (X0) −X0⟩]
∂2t E(µt) = E[⟨∇V (Xt)(T (X0) −X0), (T (X0) −X0)⟩].

If V is α-strongly convex, the second derivative of E would be lower bounded by α∥T − id∥2µ0
,

meaning that E is α-strongly convex too. Next, we will look at H, which is not as straightforward
as E . We define Tt := (1 − t)id + tT so that (Tt)#µ0

= µt. We can apply the change of variable
formula of push forward and get det∇Tt = µ0/(µt ◦ Tt). So,

H(µt) =

∫
logµtdµt =

∫
log(µt ◦ Tt)dµ0 =

∫
log

µ0

det∇Tt
dµ0 = H(µ0) −

∫
log det∇Ttdµ0.
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Taking the second derivative and after some careful derivations, we could obtain

∂2tH(µt) =

∫
∥∇T − id∥2HSdµ0 ≥ 0

where ∥ · ∥HS is the Hilbert-Schmidt norm. So, the α-strongly convex of H is established too.
Combining the two results gives us the theorem.

The following result follows from the strong convexity under a Riemannian structure.

Corollary 2.7. Consider π ∝ exp(−V ) with α-strongly convex V , we have

KL(ν|π) ≥ KL(µ|π) + ⟨∇ log
µ

π
, Tµ→ν − id⟩µ +

α

2
W2

2 (µ, ν)

for any µ, ν ∈ P2,ac(Rd).

We will now exploit these results to understand the convergence of Wasserstein gradient flow.
First, we want to get the basic results that say the Wasserstein gradient flow is indeed decreasing,
and the conditions needed for it to converge quickly.

Proposition 2.8. The Wasserstein gradient flow is always decreasing.

Proof. Let the Wasserstein gradient flow be t 7→ F (µt) for some functional F with inf F = 0, we
have

∂tF (µt) = ⟨∇W2F (µt), µ̇t⟩µ = ⟨∇W2F (µt),−∇W2F (µt)⟩µ = −∥F (µt)∥µ ≤ 0

as we chose the optimal vector field for the continuity equation.

Proposition 2.9. Under the gradient domination condition, or the Polyak–Lojasiewicz
(PL) inequality, i.e.

∥∇W2F (µ)∥µ ≥ 2αF (µ)

for some α > 0 and all µ ∈ P2,ac(Rd), the Wasserstein gradient flow converges exponentially
fast.

Proof. The result follows directly from the previous proposition and the Gronwall inequality
(Boyd and Vandenberghe, 2004).

Proposition 2.10. The α-strongly convex property of V implies the Polyak-Lojasiewicz inequal-
ity.

Proof. The α-strongly convex property of F = KL(·|π) gives us

F (ν) ≥ F (µ) + ⟨∇W2
F (µ), Tµ→ν − id⟩µ +

α

2
W2

2 (µ, ν).

If we pick ν := arg minF (·) when we assume (WLOG) inf F = 0, we would get

F (µ) ≤ −⟨∇W2F (µ), Tµ→ν − id⟩µ − α

2
W2

2 (µ, ν).

≤ 1

2α
∥∇W2F (µ)∥2 +

α

2
∥Tµ→ν − id∥2µ − α

2
W2

2 (µ, ν) =
1

2α
∥∇W2F (µ)∥2

using the fact that ∥Tµ→ν − id∥µ = W2(µ, ν) and the last inequality is due to Young’s inequality.
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Combining the previous two propositions gives us the fact that under α-strong convexity of V ,
the Wasserstein gradient flow produces an exponentially fast converging F (µt) in terms of KL
divergence. We could also recover the log Sobolev inequality when we apply the above result to
the Langevin diffusion. We will finish this section by stating without proof the following result
that will re-appear in Section 3.1. A proof can be found as Theorem 23.9 of Villani et al. (2009).

Theorem 2.11. For ν ∈ P2,ac(Rd), the Wasserstein gradient of µ 7→ W2(µ, ν) at µ is −2(Tµ→ν−
id).
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Chapter 3

Sampling Algorithms as Gradient
Flows

In this chapter, we will look at various sampling algorithms in Statistics and machine learning,
and recognise their underlying gradient flow structure. This would then help us establish various
convergence results about the sampling algorithms, and could also help us design variants to the
standard algorithms. The algorithms that we will look at are the Langevin Monte Carlo / un-
adjusted Langevin algorithm, the Stein variational gradient descent, and the denoising diffusion
model.

3.1 Langevin Monte Carlo as Gradient Flow

The Langevin diffusion is an SDE of the form

dXt = −∇V (Xt)dt+
√

2dBt

where {Bt} is a standard Brownian motion. The stationary distribution of Xt is π ∝ exp(−V )
under regularity conditions of V , as outlined in Roberts and Tweedie (1996). So, if we wish to
draw samples from the target distribution π, we could start from a starting point X0 and let it
follow the Langevin diffusion for a sufficient amount of time, wait until it converges to equilibrium,
and the trajectory of Xt afterwards would all be samples from π. The practical problem with
this idea, however, is that it is not an easy task to sample directly from a continuous SDE. One
approach to (partially) resolve this issue is by taking an Euler discretisation of the Langevin
diffusion, and we would get

Xh(n+1) = Xhn − h∇V (Xhn) +
√

2hε

where ε ∼ N(0, 1). This is known as the Langevin Monte Carlo (LMC) in machine learning
literature and unadjusted Langevin algorithm (ULA) in computational statistics literature
Roberts and Tweedie (1996). The reason why this is called ULA is that it can be viewed
as a Metropolis-adjusted Langevin algorithm (MALA) in the MCMC literature without the
Metropolis-adjustment step at each iteration (Xifara et al., 2014). The output of LMC would
not be exact samples from the target distribution π, while the output of MALA would be exact
due to the added Metropolis adjustment step. One might think the bias of LMC output is
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due to the time discretisation of the Langevin diffusion. However, gradient descent, as time
discretisation of gradient flow in the Euclidean space, converges under certain conditions on the
objective function F (Boyd and Vandenberghe, 2004). Using similar logic, we would expect
LMC, as time discretisation of gradient flow in the Wasserstein space, to converge under certain
conditions on the target distribution π, but that is not the case (Wibisono, 2018). We will explore
this point later in this section.

LMC is being used and analysed heavily despite its lack of exactness as it is easy to implement.
The analysis of LMC started with Roberts and Tweedie (1996), and a major improvement was
then made by Dalalyan (2017) where optimisation tools (for convergence analysis of gradient
descent) were introduced into the study of LMC. Essentially, they break down the problem
into studying the convergence of the Langevin diffusion and analysing the discretisation error
by the LMC. A recent breakthrough in the theories of LMC is due to Durmus et al. (2019),
where they built on the realisation made by Jordan et al. (1998) on the connection between
Langevin diffusion and Wasserstein gradient flow, and exploited convex optimisation techniques
for convergence rate analysis of gradient flow to study LMC. In this section, we will look into
the theories developed in Durmus et al. (2019).

Following the observation in Wibisono (2018), LMC uses a forward-flow splitting scheme
to discretise the Langevin diffusion. The following table lists how LMC updates the position
and the distribution with stepsize h. We denote the law of position Xm by µm, and ∗ denotes
convolution.

Forward Method X̃hn = Xhn − h∇V (Xkn) µ̃hn = (id − h∇V )#µhn

Flow Method Xh(n+1) = X̃hn +
√

2hε µh(n+1) = µ̃hn ∗N(0, 2hI)

Recall from Section 2.4.2 that the Langevin diffusion and the Wasserstein gradient flow on KL
divergence are the same. For target π = exp(−V ) (here we use = instead of ∝ only for simplicity),
we have

KL(µ|π) =

∫
log

µ

π
µ =

∫
logµdµ︸ ︷︷ ︸
=:H(µ)

+

∫
V dµ︸ ︷︷ ︸

=:E(µ)

where H(µ) is the negative entropy and E(µ) is the potential energy. The forward/explicit
method of LMC can then also be seen as a gradient descent of E while the flow method of
LMC can be viewed as a gradient flow of −H. This decomposition helps us to correctly locate
the bias - if the flow method is replaced by the adjoint of the forward method (which is the
backward/implicit method), then the overall update would be unbiased.

Now that we have correctly located the bias of LMC using Wasserstein gradient descent, we will
look at how the same perspective can be used to show convergence results of LMC, following
Durmus et al. (2019).

Consider we have the LMC algorithm targeting a d-dimensional distribution π with stepsize h.

Assumption 1. π = exp(−V ) with 0 ≲ αId ≲ ∇2V ≲ βId
1.

We first need the following auxiliary lemma.

Lemma 3.1. Under Assumption 1, if we let (µkh)k be the laws of the LMC output and we use
stepsize h ∈ [0,

√
d], then we have

2hKL(µ(k+1)h|π) ≤ (1 − αh)W2
2 (µkh|π) −W2

2 (µ(k+1)h|π) + 2βdh2.
1a ≲ b means that a = O(b), i.e. there exists constant C > 0 such that a < Cb.
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The proof of this lemma will be delayed to the end of this section. Next, using this lemma, we
can establish the following result.

Theorem 3.2. Under Assumption 1, we have

• (weakly convex) When α = 0, for ε ∈ [0,
√
d], if we pick h ≍ ε2/(βd)2, then the average law

µ̄Nh := N−1
∑N

k=1 µkh satisfies √
KL(µ̄Nh|π) ≤ ε

after N = O(βdW2
2 (µ0, π)/ε4) steps.

• (strongly convex) When α > 0, denote the condition number of V by κ := β/α, for ε ∈ [0,
√
d],

if we pick h ≍ ε2/(βd), then we have

√
αW2(µNh, π) ≤ ε,

√
KL(µ̄Nh,2Nh|π) ≤ ε

after N = O(κd/ε2 · log[
√
αW2(µ0, π)/ε]) steps, where µ̄Nh,2Nh := N−1

∑2N
k=N+1 µkh.

Proof. First, we will show the result under weakly convex V . Recall that if a function f is
convex, then we have f(N−1

∑N
i=1 xi) ≤ N−1

∑N
i=1 f(xi) using induction and the definition of

convexity. Rewriting Lemma 3.1, we have

2hKL(µ(k+1)h|π) ≤ W2
2 (µkh|π) −W2

2 (µ(k+1)h|π) + 2βdh2

KL(µ(k+1)h|π) ≤ [W2
2 (µkh|π) −W2

2 (µ(k+1)h|π)]/(2h) + βdh,

and using the convexity of the KL divergence (followed by definition and the log sum inequality),
we have

KL(µ̄Nh|π) ≤ 1

N

N∑
k=1

KL(µkh|π)

≤ [W2
2 (µ0|π) −W2

2 (µNh|π)]/(2h) +Nβdh

≤ W2
2 (µ0|π)/(2h) +Nβdh

which gives us the desired result under weakly convex V with the choice of ε and N specified in
the theorem.

Next, we will show the result under strongly convex V . The idea is that we first run LMC for N
steps so that the W2 distance is sufficiently small for us to ignore the effect of α in Lemma 3.1,
then we can recover the weakly convex case and directly apply the previously established result.

Since the KL divergence is non-negative, we can rewrite Lemma 3.1 as

W2
2 (µ(k+1)h|π) ≤ (1 − αh)W2

2 (µkh|π) + 2βdh2

which we then apply recursively and yield

W2
2 (µNh|π) ≤ (1 − αh)NW2

2 (µ0|π) + 2βdh2
N−1∑
k=0

(1 − αh)k ≤ exp(−αhN)W2
2 (µ0|π) +O(κdh)

which would give us the desired W2 bound using the specifications of h and N . This allows us
to ignore the α term in the statement of Lemma 3.1 after N steps, so the KL divergence bound
can be established using the result form weakly convex V .

2a ≍ b if we have both a ≲ b and b ≲ a.
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Finally, we will prove Lemma 3.1.

Proof. (of Lemma 3.1) Let Z ∼ π be optimally coupled to Xkh and X̃kh. We will break down
the full KL bounds into smaller parts, by considering E and H separately.

Firstly, the E term. We have E(µ̃kh) − E(π) = E[V (X̃kh) − Z]. Using the evolution variational
inequality of gradient descent (Boyd and Vandenberghe, 2004), we have

E(µ̃kh) − E(π) = E[V (X̃kh) − Z]

≤ 1

2h
E
[
(1 − αh)∥Xkh − Z∥2 − ∥X̃kh − Z∥2

]
≤ 1

2h
E
[
(1 − αh)W2

2 (µkh, π) −W2
2 (µ̃kh, π)

]
.

Next, using the β-smoothnes of V , we have

E(µ(k+1)h) − E(µ̃kh) = E[V (X(k+1)h) − V (X̃kh)]

≤ E
[
⟨∇V (X̃kh, X(k+1)h − X̃kh⟩ +

β

2
∥X(k+1)h − X̃kh∥2

]
= E

[
⟨∇V (X̃kh, B(k+1)h −Bkh⟩ +

β

2
∥B(k+1)h −Bkh∥2

]
= βdh.

Now we will look at the H term. Let (Qt)t denote the heat semigroup3, i.e. we have Qtf(x) :=
E[f(x+

√
2Bt)], so that µ(k+1)h = µ̃khQh. Recall that the heat flow is the Wasserstein gradient

flow of H while the Wasserstein gradient of H is ∇W2H(µ) = ∇ logµ, we would have, using
Theorem 2.11,

∂tW2
2 (µ̃khQt, π) ≤ 2E

[
⟨∇ logµ(X̃kh+t, Z − X̃kh+t⟩

]
where X̃kh+t ∼ µ̃khQt. Also, using the convexity of H established in Section 2.5.2, we have

H(π) −H(µ̃khQt) ≥ E
[
⟨∇ logµ(X̃kh+t, Z − X̃kh+t⟩

]
.

Combining the two results, as well as the fact that t 7→ H(µ̃khQt) is decreasing as it is the
trajectory of the gradient flow of H, we would have

W2
2 (µ(k+1)h, π) −W2

2 (µ̃kh, π) ≤ 2h[H(π) −H(µ(k+1)h)].

Compiling everything we have derived so far would give us the desired result of the lemma.

3.2 Stein Variational Gradient Descent as Gradient Flow

Liu and Wang (2016), Liu (2017), Duncan et al. (2019)

to be finished.

3for more information on semigroup theory, refer to Bakry et al. (2014)
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