
Introduction to Bayesian Optimisation

Rui-Yang Zhang

Contents

Contents 1

Preface 2

1 Introduction 3
1.1 Motivations of Bayesian Optimisation . 3
1.2 Bayesian Optimisation Framework . 4

2 Introduction to Gaussian Processes 5
2.1 From Gaussian Distribution To Gaussian Process 5
2.2 Gaussian Properties and Linear Algebra . 7
2.3 Gaussian Process Regression . 9

2.3.1 Linear Regression . 9
2.3.2 Regression using GPs . 11

2.4 Covariance Function . 13
2.4.1 Definitions and General Properties . 13
2.4.2 Examples of Covariance Functions . 13
2.4.3 Hyperparameters Tuning . 14

3 Common Acquisition Functions 15
3.1 Improvement-Based Acquisitions . 15

3.1.1 Probability of Improvement . 15
3.1.2 Expected Improvement . 16
3.1.3 Knowledge Gradient . 16

3.2 Bandit-Based Acquisitions . 19
3.2.1 Upper Confidence Bound . 19
3.2.2 Thompson Sampling . 21

3.3 Information-Theoretic Acquisitions . 21
3.3.1 Entropy Search and Predictive Entropy Search 23
3.3.2 Max-Value Entropy Search . 25

Reference 27

1

Preface

Notes on the introduction to Bayesian optimisation. Several classes of common and standard
acquisition functions are introduced. A recurring numerical example is presented for most of the
introduced acquisition functions, and the codes are implemented using the BoTorch package in
Python (Balandat et al., 2020).

2

Chapter 1

Introduction

1.1 Motivations of Bayesian Optimisation

Optimisation is a fundamental task in many modern-day disciplines and is particularly essential
in the field of statistics and machine learning. A large proportion of the questions of interest
in statistics and machine learning can be phrased as an optimisation problem - given some cost
function f defined on some input space X, we wish to find a value x ∈ X that minimises f .
Depending on the function f and our knowledge of it, different approaches can be taken.

For example, the most standard optimisation assumes that f is smooth and we know its analytic
expression as well as its gradient ∇f . Also, the input space X is the full Euclidean space. Then,
optimisation of f can be done using (stochastic) gradient descent, where we iteratively move
our values in the directions of the steepest descent characterised by the gradient at the current
position. Provided with further assumptions on f , such as convexity or Lipschitz continuity, we
can characterise the quality of the algorithm and its speed of convergence (to an optimum).

We could have a constrained input space and a certain structure of the cost function f that could
be beneficial to us. For example, if the cost function is linear, and the input space is limited by
a set of linear constraints (such as linear inequalities), we can phrase the optimisation problem
as a linear programming problem, and tackle it using devices such as the simplex algorithm.
Theoretical understanding of such linear programming algorithms and amendments for large and
hard problems are abundant and well-established in the mathematical programming literature.

However, there is another class of problems - we do not know the analytic expression of f , we think
it is probably continuous, and it is extremely costly to do point-wise evaluations of f . This class
of problems, although sounding unnecessarily hard and unrealistic at first, is increasingly more
present in modern-day machine learning. These functions f could be a performance measure of a
large model (say a massive, deep neural network with non-trivial architecture or a large language
model) and the input space is the set of all possible values of the parameters of the model -
which could be of thousands or even millions in dimension in total. In such a case, any of the
above methods like gradient descent and linear programming will fail instantly as the fundamental
assumptions of such algorithms are never going to be met. In addition, we should refrain from
doing a grid search or any other method that involves a lot of evaluations, as computing f in
this type of case will involve re-training the model with the full dataset and it could be extremely
costly. This type of optimisation is not only present in machine learning but in many real-world
applications too. For example, we may be interested in understanding some remote areas of the
Earth (say the sea floor) and our detection method is highly costly (in price and time) so we do
not wish to blindly make too many detections and observations unnecessarily. For such problems,
the common approach is via Bayesian optimisation, which is the central topic of this note.

3

1.2 Bayesian Optimisation Framework

From the top level, Bayesian optimisation is a sequential/iterative decision-making process that
recursively conducts the following to find an optimum for the function f :

1. Find the next evaluation point x according to a policy.
2. Evaluate the function at the point, y = f(x), and add (x, y) to our dataset D.
3. Update our surrogate model g ≈ f using the updated dataset D.

There are two key ingredients of the above procedure - the policy and the surrogate model. The
surrogate model is a sufficiently large class of functions that is (relatively) cheap to work with.
Almost always, for Bayesian optimisation, the surrogate model is chosen as a Gaussian process
due to its nice conjugacy for model updates and its ability to quantify uncertainties. A short
introduction to Gaussian processes will be presented in Chapter 2.

The choice of policy, however, is not as unanimous. The goal of the policy is to direct our
search strategy for the optimum, and depending on the questions of interest, we could be focusing
on different things - leading to a different choice of policy. A theme in the design of search
policy is the exploration-exploitation tradeoff, which is the problem of spending our limited
(computational) resources on having a better grasp of the problem - i.e. exploration - versus
improving on our existing results - i.e. exploitation. Naturally, over-emphasis on either one of the
two is not desirable, and careful deliberation is needed. The rest of the notes will be devoted to
discussing the various existing search policies and their similarities and differences.

More often than not, the policy of choice is phrase using an acquisition function. We denote
the input space of our objective function f as X, and consider the search space - the space that
we are allowed to make evaluations - as S. Here we will assume that S = X, and will use X to
denote both for simplicity of notation. However, one should note that the search space and the
input space need not be identical, and in many real-life applications, we are interested in the case
where S ⊊ X. The acquisition function α is a function defined on the entire search space S, and it
captures the benefits (further gain for maximisation and further loss for minimisation) of making
a further evaluation at that particular point. Then, our BO step 1 is to find argmaxx∈S α(x) as
our next evaluation point.

Before moving on to describe some common examples of acquisition functions (and how to find
their argmax exactly or approximately), let us pause for a bit and consider what we are doing with
the BO loops. As mentioned earlier, BO is doing sequential decision-making, and in particular,
for each iteration, we are making the move that maximises our gain within one more move. This
means, using decision theory terms, we are doing an one-step lookahead, which is a myopic,
or greedy, policy. Certainly, we could make it non-myopic by considering doing a multiple-step
lookahead and picking the choices of these steps that maximise our overall gain. However, there
are two immediate problems: (1) it is significantly more costly to find the best n-moves, as it often
involves solving some Bellman equation which gets exponentially harder as n increases; (2) our
understanding of the objective function via the acquisition function is incomplete, and making too
many predictions in sequence using a bad model is not a good idea. Therefore, although myopic
policies are not ideal in general, in the case of Bayesian optimisation, it becomes beneficial.

For the rest of this notes, we will consider a maximisation problem for our BO by default. The con-
version of a minimisation problem min f can be transformed trivially to a maximisation problem
as max−f .

4

Chapter 2

Introduction to Gaussian
Processes

In this chapter, we will introduce the basic notions and relevant results about Gaussian processes,
which is the fundamental model that we will use for modelling ocean currents. We will motivate
Gaussian processes and illustrate it as a natural extension of the multivariate Gaussian in Sec-
tion 2.1. We will then describe various linear algebra results and their implications in Gaussian
random vectors in Section 2.2, which serve as the theoretical building blocks for Gaussian process
regressions in Section 2.3. The main degree of freedom of a Gaussian process is its covariance
function, and we will spend Section 2.4 investigating it in detail. One should note that a large
portion of the material of this chapter is based on Williams and Rasmussen (2006).

2.1 From Gaussian Distribution To Gaussian Process

A stochastic process is a sequence of random variables {Xt}t indexed by t. The index usually
represents the time steps of the process, but it is not always the case. In the case of the Gaussian
process (GP), and in particular the applications of GP that we consider here, the index is not
related to time but to space. This change will become clear soon.

A univariate Gaussian distribution N(µ, σ2) with mean µ and variance σ2 is a common object of
interest. It is one-dimensional, and we can generalise it to make it finite-dimensional, which we
denote by Nd(µ,Σ) and call it a multivariate Gaussian, where the mean vector µ here is now a
d-vector and covariance matrix Σ is a d×d matrix that is symmetric and positive semi-definite.
A matrix Σ is symmetric if ΣT = Σ, and it is positive semi-definite if xTΣx ≥ 0 for all d-vectors
x.

For simplicity, we will let the means and the mean vectors we consider here zero unless stated
otherwise. Consider a multivariate Gaussian with highly correlated dimensions. Normally, when
we plot a sample from a d-dimensional Gaussian, we will plot it in the d-dimensional space. Here,
we will do something different, and plot the values of each dimension in the same plot, sequentially.
In the following plots, we can see how a sample might look like in this format with d = 3, 10, 100.

5

Figure 1: Sequentially plotted samples from d-dimensional Gaussian with d = 3, 10, 100.

As shown in Figure 1, the highly correlated Gaussian plotted sequentially makes it look very
much like a (smooth) function. This inspires us to consider the infinite-dimensional extension of
a multivariate Gaussian and use that to approximate a function. This is the idea of Gaussian
process.

Formally, the Gaussian process (GP) y = {y(x)}x∈X is a stochastic process indexed by space
x ∈ X with a mean function µ(·) and a covariance function k(·, ·) such that E[y(x)] = µ(x) and
Cov(y(x), y(x′)) = k(x, x′). We will denote such a process as

y(·) ∼ GP (µ(·), k(·, ·)).

A key feature of a GP is that any finite-dimensional segment (i.e. isolating finitely many points
from the full process) is a multivariate Gaussian distribution.

The covariance function needs to satisfy some requirements for it to be a suitable covariance
for a GP. The requirement is essentially an extension of the requirement of covariance matrices
for a multivariate Gaussian. The covariance function k of a GP needs to be symmetric (so
k(x, y) = k(y, x) for any x, y) and positive semi-definite, in the sense that for any x1, x2, . . . , xn,
the matrix K formed by setting Kij = k(xi, xj) needs to be a positive semi-definite matrix. The
covariance function is a way to ensure the dependency/similarity of points across indices.

The two degrees of freedom of a GP are its mean function and its covariance function, and we
have assumed the mean is zero. It is not hard to assume that the covariance function characterises
the GP to a very large extent. The detailed ways of how properties of the covariance function
imply the properties of the GP, as well as some common covariance functions, will be discussed
in Section 2.4.

A Gaussian process defined on the real line R will have (uncountably) infinite points, meaning
that if we wish to plot it numerically, we would need to generate all infinitely many points, which
is not feasible. Instead, the common practice in such situations is to do a simple discretisation.
Assume that we are interested in a small region of the real line, say [a, b] with a < b, we will
break the interval down into smaller equal-length pieces and use the endpoints of those pieces to
approximate the full trajectories. To be more precise, if we wish to break the interval down into
n pieces, we would have

a = x1 < x2 < · · · < xn = b

where xi+1 − xi = (b − a)/(n − 1) for i = 1, 2, . . . , n − 1. Then, using the property of GP, the
distribution of any finite points will follow a multivariate Gaussian distribution. If we denote the
covariance matrix of the points x = (x1, x2, . . . , xn) by K where Kij = k(xi, xj) and k is the
covariance function of the GP, then we have

y(x) =


y(x1)
y(x2)

...
y(xn)

 ∼ Nn(µ(x),K)

6

so generating those points would be straightforward. The gaps between the points will be ex-
trapolated by a straight line. We can also the variance of the multivariate Gaussian to draw a
confidence region of the generated process.

Figure 2: Gaussian Processes generated with different number of segments.

2.2 Gaussian Properties and Linear Algebra

In this section, we will look at several key properties of Gaussian random variables and Gaussian
processes that will play a fundamental role in the rest of this note. Some derivations will be
included.

Consider we have a multivariate Gaussian distribution Nd(m,Σ) with mean vector m and covari-
ance matrix Σ. The probability density function is given by

p(x;m,Σ) = (2π)−d/2|Σ|−1/2 exp

[
−1

2
(x−m)TΣ−1(x−m)

]
.

Next, consider two multivariate Gaussian X ∼ Nd1
(mx, A) and Y ∼ Nd2

(my, B) where d1 and d2
may not be the same. The joint distribution of X and Y is given by[

X
Y

]
∼ Nd1+d2

([
mx

my

]
,

[
A C
CT B

])
where C represents the covariance matrix between X and Y . If X and Y are independent, then
C is zero. With this joint distribution, we would be interested in the marginal distributions and
the conditional distributions. We have, for marginals,

p(x) =

∫
p(x, y)dy, X ∼ Nd1

(mx, A)

p(y) =

∫
p(x, y)dx, Y ∼ Nd2(my, B).

For conditionals, we have

p(x|y) = p(x, y)/p(y), X|Y = y ∼ N(mx + CB−1(y −my), A− CB−1CT)

p(y|x) = p(x, y)/p(x), Y |X = x ∼ N(my + CTA−1(x−mx), B − CTA−1C).

The derivation of the marginal distributions is easy to see, which we omit. For conditionals, it is
more complicated and we will establish it below. One identity that we will use is the formula for
the inverse of the block matrix, which is easy to verify.

Proposition 2.1 (Inverse of Block Matrix). For block matrix[
A B
C D

]
where A,B,C,D are matrices on their own, the inverse[

A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.

7

Using the above result, we can derive the conditional distribution. We will just derive the case of
X|Y = y, and the distribution of Y |X = x is similar.

Proposition 2.2. For joint distribution of X1 and X2 where X1 is of dimension n1, X2 is of
dimension n2 and the joint is of dimension n = n1 + n2, it is given by[

X1

X2

]
∼ N(µ,Σ) = N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

we have the conditional distribution

X1|X2 = x2 ∼ N(µ1|2,Σ1|2).

where µ1|2 = µ1 +Σ12Σ
−1
22 (X2 − µ2) and Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.

Proof. Using the definition of density, we have

p(x1|x2) =
p(x1, x2)

p(x2)
=

(2π)−n/2|Σ|−1/2 exp
[
− 1

2 (x− µ)TΣ−1(x− µ)
]

(2π)−n2/2|Σ22|−1/2 exp
[
− 1

2 (x2 − µ2)TΣ
−1
22 (x2 − µ2)

]
= (2π)−n1/2|Σ|−1/2|Σ22|1/2 exp

[
−1

2
(x− µ)TΣ−1(x− µ) +

1

2
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

]
.

Following the inverse of block matrix formula of Proposition 2.1, we have the following if we focus
just on the exponential

− 1

2
(x− µ)TΣ−1(x− µ) +

1

2
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

= −1

2
(x− µ)T[
(Σ11 − Σ12Σ

−1
22 Σ21)

−1 −(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

−Σ22Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1 Σ−1
22 +Σ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

]
(x− µ) +

1

2
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

= −1

2
(x1 − µ1)

T (Σ11 − Σ12Σ
−1
22 Σ21)

−1(x1 − µ1)

+ (x1 − µ1)
T (Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)

− 1

2
(x2 − µ2)

T [Σ−1
22 +Σ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22](x2 − µ2)

+
1

2
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

= −1

2
(x1 − µ1)

T (Σ11 − Σ12Σ
−1
22 Σ21)

−1(x1 − µ1)

+ (x1 − µ1)
T (Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)

− 1

2
(x2 − µ2)

TΣ−1
22 Σ21(Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2).

If we rearrange them, the above term would become

−1

2
[x1 − µ1 − Σ12Σ

−1
22 (x2 − µ2)]

T (Σ11 − Σ12Σ
−1
22 Σ21)

−1[x1 − µ1 − Σ12Σ
−1
22 (x2 − µ2)]

which yields the mean and covariance of the conditional distribution, as desired.

Another nice property of Gaussian distributions is that a linear combination of Gaussian is still
Gaussian. For example, for multivariate X, AX +B is a multivariate distribution too where A is
a matrix and B is a vector with the right dimension. This can be formally established using the
moment-generating function, which we will omit.

8

Proposition 2.3. For multivariate Gaussian X ∼ N(µ,Σ), given matrix A and vector B with
the right dimension, we have

AX +B ∼ N(Aµ+B,BΣBT).

A consequence of the above result is that the sum of two multivariate Gaussian with the same
dimension is also a multivariate Gaussian.

Proposition 2.4. For independent multivariate Gaussian X ∼ N(µ1,Σ1) and Y ∼ N(µ2,Σ2)
with the same dimension, we have

X + Y ∼ N(µ1 + µ2,Σ1 +Σ2)

The above result can be obtained by first getting the joint distribution ofX and Y , then considering
the linear transformation with A = I and B = 0.

Another result that we will state but not derive is the product of two Gaussian densities is
proportionate to a Gaussian density.

Proposition 2.5. Let X ∼ N(a,A) with density p(x) and Y ∼ N(b, B) with density p(y), we
have

p(x)p(y) ∝ p(z)

where p(z) is the density of Z ∼ N(c, C) and

C = (A−1 +B−1)−1, c = C(A−1a+B−1b).

2.3 Gaussian Process Regression

The results mentioned in the previous section will play an important role in this section where
we consider doing the task of regressions using Gaussian processes. In the field of supervised
learning (where we have both data and their label, as opposed to unsupervised learning where
we only have data and not labels), the two main tasks are regression and classification. They
are essentially the same problem, but regression deals with continuous labels, and classification
deals with discrete labels. One should also know that Gaussian process regression is used in many
areas, and it is often called kriging in the spatial statistics literature.

2.3.1 Linear Regression

The problem of regression studies the relationship between covariates and the response using data.
For example, in many scientific disciplines, we are interested in understanding the relationship
between various factors (called covariates) and some key metric (called response), e.g. the
relationship between biological measurements (such as weight, height, and blood pressure) and
the hazard rate of a disease (such as diabetes). This has been heavily studied throughout the
history of statistics and machine learning. One of the most basic types of regression, which is the
topic here, is linear regression where we assume a linear relationship between the covariates and
the response. We will also take a Bayesian approach.

If we denote the covariates by a vector x and the response by y (which we assume to be one-
dimensional here, although it can be generalised), the linear regression assumes the following
model:

f(x) = xTw, y = f(x) + ε (1)

where w is the weight vector for each of the covariates, f(x) is the (latent) true function repre-
senting the relationship between x and y, while ε represents the noise vector, and we assume it is
a Gaussian random variable here with mean zero and variance σ2

n, i.e. ε ∼ N(0, σ2
n) where n is

the size of the data set. Normally, one of the covariates in x will represent the bias of the model,
and that element in x is usually put as 1.

9

The Equation (1) represents the general formula, and for each data point, indexed by i, with
response yi and covariates xi. The likelihood of the model for observing a data point (xi, yi) is
then

p(yi|w, xi) =
1√
2πσn

exp

[
− (yi − xT

i w)
2

2σ2
n

]
(2)

due to the Gaussianity of the noise ε.

We assume the variance of the noise is known, which can usually be estimated using an empirical
variance estimator. This assumption means that the only unknowns of our linear regression
problem are the values of the weight vector w, which we aim to infer using data. In the Frequentist
setting, the likelihood described in Equation (2) is all we need - we just multiply the likelihoods for
all the data points, and find the w values that maximise the multiplied quantity. In the Bayesian
setting, we need more than that. First, we need to impose a prior distribution to the weight vector
w, and then compute the posterior by multiplying the prior and the likelihood, then normalise,
using the Bayes formula. For prior of weight vector w, we will use

w ∼ N(0,Σp). (3)

Some further comments on the prior choices will be stated later on.

Combining the prior of Equation (3) and the likelihood of Equation (2), we have the posterior
distribution as follows using Proposition 2.5

p(w|x, y) ∝ p(w)p(y|w, x)

∝ exp

[
− 1

2σ2
n

(y − xTw)T (y − xTw)

]
exp

[
−1

2
wTΣ−1

p w

]
∝ exp

[
−1

2
(w − w̄)T

(
1

σ2
n

xxT − Σ−1
p

)
(w − w̄)

]
where w̄ = σ−2

n (σ−2
n xxT +Σ−1

p)−1xy, making the posterior the density of

w|x, y ∼ N(w̄, A−1), A := σ−2
n xxT +Σ−1

p (4)

which is a very nice conjugacy. An estimator for the weights given to the data will be some
summary statistics of the posterior distribution, such as the mean or the mode. In this case, due
to the geometry of the Gaussian distribution, the mean and the mode are identical and are identical
to the maximum likelihood estimator when we formulate the problem as a ridge regression in
the frequentist literature. If we use a different prior for w, such as the slab-and-spike prior, we
could recover the lasso regression maximum likelihood estimator.

If we are fed with a new data point without the response to the model, we are essentially hoping
to make a prediction using the weight vector w|x, y we have inferred and the observed covariates
x∗. The prediction distribution f∗ will have the distribution

p(f∗|x∗, x, y) =

∫
p(f∗|x∗, w)p(w|x, y)dw, f∗ ∼ N

(
1

σ2
n

xT
∗ A

−1xy, xT
∗ A

−1x∗

)
(5)

using again the result of Proposition 2.5.

In general, there are two main goals of regressions: (1) understanding the relationship between
covariates and response, (2) predicting the response for new data points. The first point is to make
analyses and comments based on our updated knowledge of weights w, while the second point is
to exploit the predictive distribution of Equation (5). In our case, the relationship between the
covariates and the response is forced to be linear by construction, which is like ‘fitting a straight
line’. In general, as we expand the class of functions for the possible relationships f(x) (such as
in the case of GLM), we would be ‘fitting a curve’. In the next part, we will study how one can
do curve-fitting using GPs.

10

2.3.2 Regression using GPs

Linear regression is fitting a linear function f(x) = xTw using the observed covariates and the
response variable. A Gaussian process, as we have described in Section 2.1, can be used to
approximate a lot of functions. This inspires us to use a GP to model the relationship f(x). An
important assumption that we will make here is to assume the noise ε is always Gaussian, which
allows us to leverage the nice conjugacy of Gaussian random variables. This will become clear
soon.

First, we will consider the simple problem of regression with exact observation, meaning that the
observed data points (xi, yi)i contain no noise, so we get what we see. In this case, we will use
x to denote all the observed covariates and f to denote all the observed responses. In this case,
extending what we have described at the end of Section 2.1, we can have the joint distribution
of f and f∗ where f∗ is the points that we use to approximate the GP trajectory discretised at
points x∗ as [

f
f∗

]
∼ N

(
0,

[
K(x, x) K(x, x∗)
K(x∗, x) K(x∗, x∗)

])
where K represents the covariance matrix constructed by measuring the covariance between any
two points using the covariance function k of the GP. As our observations do not have noise, the
covariance matrix is exactly as it is. Consequently, using Proposition 2.2, we know that

f∗|x, x∗, f ∼ N(K(x∗, x)K(x, x)−1f,K(x∗, x∗)−K(x∗, x)K(x, x)−1K(x, x∗)

which essentially collapses the process at the observed points x, f due to the absence of noise in
observations. This gives us the regression curve after observing the data (x, f).

Figure 3: Latent Function of Gaussian Process Regression with 20 data points and no noise, using
GPJax package of Pinder and Dodd (2022).

Figure 4: Posterior of Gaussian Process Regression with 20 data points and no noise, using GPJax
package of Pinder and Dodd (2022).

A straight-forward and probably necessary extension is to consider the case where we make not
exact but noisy observations where the noise is

ε ∼ N(0, σ2
n).

11

In this case, if we observe (xp, yp) and (xq, yq), their covariance will be

Cov(yp, yq) = k(xp, xq) + σ2
nδpq

where δab = 1 when a = b and is zero otherwise. We can then generalise it to get

Cov(y) = K(x, x) + σ2
nI

and [
y
f∗

]
∼ N

(
0,

[
K(x, x) + σ2

nI K(x, x∗)
K(x∗, x) K(x∗, x∗)

])
.

This then leads to the following conditional distribution, which is the regression curve after the
observations

f∗|x, x∗, f ∼ N(f̄∗,Cov(f∗))

f̄∗ := K(x∗, x)[K(x, x) + σ2
nI]

−1f,

Cov(f∗) := K(x∗, x∗)−K(x∗, x)[K(x, x) + σ2
nI]

−1K(x, x∗).

Another quantity of interest is the marginal likelihood of observing the data p(y|x) given the
model. Notice that here we are not specifying the dependencies of parameters in any of our
expressions explicitly, we can certainly imagine the existence of some hyperparameters in our
kernel function, as well as the variance of the observation noise being unknown. Knowing the
marginal likelihood p(y|x) is helpful for estimating these quantities of interest, and an expression
for the marginal likelihood is

f |X ∼ N(0,K), y|f ∼ N(f, σ2
nI)

p(y|x) =
∫

p(y|x, f)p(f |y)df

log p(y|x) = −1

2
yT (K + σ2

nI)
−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π

(6)

when we set a Gaussian prior to f |X as this leads to y ∼ N(0,K + σ2
nI).

Figure 5: Latent Function of Gaussian Process Regression with 20 data points and noise, using
GPJax package of Pinder and Dodd (2022).

Figure 6: Posterior of Gaussian Process Regression with 20 data points and noise, using GPJax
package of Pinder and Dodd (2022).

12

2.4 Covariance Function

In this section, we will explore more concretely the covariance functions of a Gaussian process.
The two degrees of freedom of a Gaussian process are the mean function and the covariance
function, and we often set the mean function to be zero, so the only real variability of a GP is
the covariance function. Different choices of the covariance function will certainly lead to very
different GPs. In this section, we will first outline some general properties and definitions related
to covariance functions, then study a few commonly used covariance functions in detail.

2.4.1 Definitions and General Properties

As mentioned in Section 2.1, a GP y(·) is a stochastic process with the mean function µ(·) and the
covariance function k(·, ·), such that any finite points of the GP will form a multivariate Gaussian
distribution. Because of this requirement, the covariance function needs to be (1) symmetric,
i.e. k(a, b) = k(b, a) (2) positive semi-definite, i.e.∫

k(x, x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0

for all f ∈ L2(X,µ) where µ is some base measure and X is the support of the GP. Such a
covariance function k will also be called a kernel, due to its link with the theory of integral
operators.

For a set of points x = {xi}ni=1, we can compute its Gram matrix K using the kernel k such
that K ∈ Rn×n and Kij = k(xi, xj). The Gram matrix in the context of GP will be used as the
covariance matrix for the joint distribution of the points x = {xi}i.

One can view the kernel as a way to measure the similarity between two points. Since we would
wish two points x, x′ close to each other to be very similar - so highly dependent - in order to
achieve some degrees of smoothness and the regularities of the overall GP, the quantities x−x′ and
∥x− x′∥ would be of major importance. A covariance function that can be defined as a function
of x− x′ is called stationary (in the wide sense), or wide-sense stationarity (WSS), as it will
be invariant to translations in the input space/support. A covariance function that can be defined
as a function of ∥x− x′∥ is called isotropic as it will be invariant under all rigid motions.

Finally, we can compose existing kernels to get new kernels. The sum of kernels is a kernel, and
the product of kernels is also a kernel. These results follow naturally by checking the positive
definiteness of the constructed functions, and the proof for these results can be found in Section
4.2.4 of Williams and Rasmussen (2006).

2.4.2 Examples of Covariance Functions

Two examples of covariance functions will be introduced here - the squared exponential (SE)
covariance function and the Matérn class covariance function.

The squared exponential (SE) covariance function kSE is defined by

kSE(x, x
′) = exp

[
−∥x− x′∥2

2l2

]
=: exp

[
− r2

2l2

]
= kSE(r)

where we define r := ∥x − x′∥ and l > 0 is the length-scale of the kernel. From the definition,
it is straightforward to notice that the SE kernel is stationary and isotropic, and the value of the
length-scale characterises the degree of similarity between two nearby points - the higher the l,
the more dependent two nearby points become. One should realise by the expression of kSE that
it is more of an exponentiated quadratic than a squared exponential, therefore some authors will
denote the same kernel as the exponentiated quadratic kernel.

Since the SE kernel is defined by an exponential function, it is therefore infinitely differentiable
(or smooth).

13

The Matérn class kernels is defined by

kMatérn(x, x
′) =

21−ν

Γ(ν)

(√
2ν∥x− x′∥

l

)ν

Kν

(√
2ν∥x− x′∥

l

)

=:
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2ν

l
r

)
= kMatérn(r)

where we define r := ∥x− x′∥, l > 0 is the length-scale of the kernel, Γ is the Gamma function,
ν > 0 is the smoothness parameter of the kernel, and Kν is the modified Bessel function of the
second kind. The smoothness parameter ν usually is chosen to be half integers, as ν = p+1/2 for
non-negative integer p. For example, we have the following three examples of ν:

k
ν=1/2
Matérn(r) = exp

(
−r

l

)
k
ν=3/2
Matérn(r) =

[
1 +

√
3r

l

]
exp

(
−
√
3r

l

)

k
ν=5/2
Matérn(r) =

[
1 +

√
5r

l
+

5r2

3l2

]
exp

(
−
√
5r

l

)

and we can also show that using the definition, as ν → ∞, kMatérn(r) → kSE(r).

2.4.3 Hyperparameters Tuning

In Section 2.3, we have focused on how one can do curve fitting using GPs with a fixed, pre-
determined kernel. However, as we have seen in earlier parts of this section, there are multiple
choices for kernels, and each kernel also depends on tuning hyperparameters that will influence
the GP. Therefore, in practice, one should really consider the problem of hyperparameter tuning,
which we will study here.

Assuming that we have fixed the choice of kernel, we then need to worry about how to tune the
hyperparameters. We will treat the hyperparameters as additional parameters of the overall GP
model while fitting the GP during regression. If one wishes to do regression using maximum
likelihood, then it is quite straightforward - just pick the values for the hyperparameters (and the
weight vector for covariates) that maximise the joint likelihood function using all the data. The
log-likelihood is then provided as

log p(y|X) = −1

2
yT (K + σ2

nI)
−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π

where X is the prior model, y is the vector of n observations and σ2
n is the observation noise, and

K is the Gram matrix of the observations y. This form of log-likelihood assumes the observations
are independent and identically distributed.

If one wishes to do regression using a Bayesian approach, then one would need to pose some prior
on the weight vector, as well as the hyperparameters of the kernel, then compute the posterior
distribution of all the parameters of interest and do the estimation using some summary statistics
of the posterior, computed/estimated using conjugacy or Monte Carlo methods (such as MCMC).

14

Chapter 3

Common Acquisition Functions

To recall from the previous sections, in a Bayesian optimisation iteration, we will first find the
next evaluation according to some policy (here as we are taking the acquisition function approach,
we will be using the maximiser of the acquisition function as the next evaluation point), evaluate
it and append it to the dataset, and refit our surrogate model.

When designing acquisition functions, it is the bare minimum that the maximisation of an acqui-
sition function should be cheaper than evaluating a point from the objective function - or else the
purpose of doing BO will be defeated. Notice that the maximisation of the acquisition function
is a maximisation task embedded in one iteration of Bayesian optimisation, we will often denote
this as the inner-loop maximisation.

The following derivations are done with the additional assumptions that the observations are
without noise - i.e. we are making exact observations f(x).

We divide the acquisition functions mentioned in this chapter into three main classes:

1. improvement-based (probability of improvement, expected improvement, knowledge gradi-
ent), Section 3.1

2. bandit-based (upper confidence bound, Thompson sampling), Section 3.2
3. information-theoretic (entropy search, predictive entropy search, max-value entropy search),

Section 3.3.

With each acquisition choice, we will provide a numerical example of running Bayesian optimisa-
tion with that particular choice of acquisition function. The function that we wish to maximise
is

f(x) = sin(5x) + cos(8x+ 3)

over the closed interval x ∈ [0, 2]. We first make 3 randomly drawn observations. The observations
here are all with additive Gaussian noise of standard deviation 0.1. Afterwards, we will run the
Bayesian optimisation 6 times and will obtain 6 further observations (with noise).

3.1 Improvement-Based Acquisitions

3.1.1 Probability of Improvement

The first choice of an acquisition function is the probability of improvement.

Consider we have already evaluated n data points and our current dataset is Dn = {(xk, yk)}nk=1.
With Dn, we have also fitted a surrogate model using GP with the prior model being g ∼ GP(µ, k)
and the posterior after observing Dn as gn = g|Dn ∼ GP(µn, kn). Also, we denote the largest (as
we are maximising) observation value so far as y∗n = maxm≤n ym.

15

Given our current surrogate model gn, the probability of improvement wishes to find the next
evaluation point that beats our current best (i.e. y∗n) with the highest probability. Therefore, we
can define a utility function

uPI
n (x) =

{
1 if gn(x) ≥ y∗n
0 else

and a subsequent acquisition function

αPI
n (x) = E[uPI

n (x)|Dn]

= P[gn(x) ≥ y∗n]

= Φ

(
y∗n − µn(x)

kn(x, x)

) (7)

where Φ is the CDF of standard normal, since our surrogate model gn ∼ GP(µn, kn) evaluated at
the point x collapses to a normal distribution and gn(x) ∼ N(µn(x), kn(x, x)). This acquisition
function is not hard to compute point-wise, and it certainly captures some notions of improve-
ments, thus it is a sensible choice - not a bad starting point.

3.1.2 Expected Improvement

Recall that when deriving the probability of improvement acquisition function, we defined a utility
function that takes 1 when an improvement happens and 0 otherwise. This does not account for
the magnitude of improvement - surely a 80% chance of improving by 10 is superior to a 81%
chance of improving by 5. So, with the new utility function for the expected improvement, we
will account for the magnitude of the improvement too. So we have a utility function

uEI
n (x) =

{
gn(x)− y∗n if gn(x) ≥ y∗n
0 else

and a subsequent acquisition function

αEI
n (x) = E[uEI

n (x)|Dn] = Egn [(X − y∗n)1X≥y∗
n
]

=

∫ ∞

y∗
n

(x− y∗n)ϕn(x)dx =

∫ ∞

y∗
n

xϕn(x)dx− y∗n

∫ ∞

y∗
n

ϕn(x)dx

= µn(x)Φ

(
y∗n − µn(x)

kn(x, x)

)
+ kn(x, x)ϕ

(
−y∗n − µn(x)

kn(x, x)

)
− y∗nΦ

(
y∗n − µn(x)

kn(x, x)

)
= [µn(x)− y∗n]Φ

(
y∗n − µn(x)

kn(x, x)

)
+ kn(x, x)ϕ

(
−y∗n − µn(x)

kn(x, x)

)
(8)

where 1A is the indicator function for event A, ϕn(x) denotes the density of gn and ϕ denotes the
density of standard normal.

It is still feasible to compute the above acquisition point-wise, so it is still a sensible choice.
Referencing the exploration-exploitation trade-off, one can view the two terms of the expected
improvement acquisition function as the exploitation term (the first term of Equation 8) and the
exploration term (the second term of Equation 8). The first term favours the locations that give
a high chance and high magnitude of improvement, while the second term favours the locations
with high uncertainties.

3.1.3 Knowledge Gradient

One of the shared assumptions in the probability of improvement and the expected improvement is
that when choosing the output point, we are restricted to the points that we have evaluated so far,
i.e. y∗n = maxm≤n ym. This is certainly not necessary, as we could set the points of consideration
as the entire input space, and output the point with the largest mean, so y∗n = maxx∈X µn(x).

16

Figure 7: Probability of Improvement

17

Figure 8: Expected Improvement

18

As a consequence of this adjustment, we will incorporate the new evaluation into our surrogate
model, figure out the updated mean function µn+1, and compare the maximum of that with our
current best y∗n. This is the knowledge gradient.

If we denote µ∗
n+1(x) as the largest mean of the surrogate model after incorporating the new value

(x, f(x)), i.e. µ∗
n+1(x) = maxy∈X µx

n+1(y) with µx
n+1(·) being the mean function of the updated

surrogate g|Dn ∪ {(x, f(x)}, then the improvement we will make after observing x to our overall
result of the BO iteration is

uKG
n (x) = µ∗

n+1(x)− µ∗
n,

which is the utility function for the knowledge gradient. Notice that we will not know µ∗
n+1(x) -

since it depends on evaluating at x - at time n without doing evaluations, we will need to maximise
the expected value of the utility function, which is the knowledge gradient acquisition function

αKG
n (x) = E[uKG

n (x)|Dn] = Egn [µ
∗
n+1(x)− µ∗

n]. (9)

A major obstacle with the knowledge gradient is the computation (and maximisation) of the
acquisition function αKG

n as there lacks a general closed-formed expression. In the discrete domain
(i.e. the size of the input space X is finite), the knowledge gradient acquisition function can be
computed explicitly. In the general domain, except for certain nice GP models, we do not have a
nice expression and therefore must resort to numerical approximations.

add details of numerical approximations

3.2 Bandit-Based Acquisitions

The multi-armed bandit (MAB) is a sequential decision problem. The problem assumes that
we have N arms that we can pull which then provides a reward instantly after paying some price
for pulling the arm, and we can choose which arm to toggle at each time step. The goal is to
devise a policy of pulling the arms so that we obtain a maximum overall reward at a terminal
time point. The rewards generated by an arm are not (always) deterministic, but it is commonly
assumed to follow a fixed probability distribution. If the rewards are deterministic, the problem
will be easy - just pull each of the N arms once, get the rewards, and only pull the one that yields
maximum rewards afterwards.

The immediate application of a multi-armed bandit is the slot machine in casinos, where each arm
is a button of the machine, and we wish to maximise our overall reward (gains in cash). There
are many other problems that can be phrased as an MAB problem, such as the patient allocation
of a clinical trial in the response-adaptive randomisation setting. In general, the MAB is a special
case of an reinforcement learning problem where an agent is interacting with an environment
and obtaining feedback which in turn guides the followed-up behaviours of the agent.

It is not too much of a stretch to notice the similarity between an MAB and a Bayesian optimisation
problem - both are making decisions sequentially, both obtain a reward after the action and use
that to decide on what to do afterwards, and both have an objective function that we wish to
optimise. There are of course differences, such as the MAB has only N arms thus finite N options
at each time, whereas the BO can evaluate at any point in the input space X, which is often
infinite, such as R. Nevertheless, there are sufficient motivations for us to borrow ideas from MAB
and apply them to BO, as the two acquisition functions below will illustrate.

3.2.1 Upper Confidence Bound

The idea of upper confidence bound is very simple, and it explicitly encodes the exploration-
exploitation trade-off. For each point x in the search space S = X, we know two things about
it from the surrogate model gn = g|Dn: its mean µn(x) and its variance kn(x, x)(thus standard
deviation

√
kn(x, x)). We want to exploit places with high mean (which could promise gains) and

19

Figure 9: Knowledge Gradient

20

explore places with high uncertainties (which could lead to surprising gains). Thus, we have the
following upper confidence bound acquisition function

αUCB
n (x) = µn(x) + β

√
kn(x, x) (10)

where β = Φ−1(c) is the tuning parameter balancing exploration-exploitation, obtained via the
inverse standard normal CDF Φ−1 at confidence level c ∈ (0, 1). For example, Φ−1(0.5) = 0.5.

Many places treat β as a mere tuning parameter, but it is actually more informative than that
and is indeed allowing our acquisition function to be about upper confidence bound. For a point
x, its distribution under our surrogate model gn is N(µn(x), kn(x, x)), so its 100c%-quantile is
given by µn(x) + Φ−1(c)

√
kn(x, x), precisely that of αUCB

n (x).

show example

3.2.2 Thompson Sampling

The idea of Thompson sampling (applied to BO) goes like this: given a surrogate model gn,
we build a probability distribution p(x∗|Dn) that describes our knowledge about the location of
global maximum x∗, and draw a sample from it as our next evaluation point. So, ideally, the
distribution p(x∗|Dn) will put a high probability in regions of the input space where it thinks the
global maximum will lie, and a low probability in regions where it thinks otherwise.

Constructing such a probability distribution of the location of the global maximum is the key
challenge of this approach. The most common way to tackle it is via empirical distribution. One
will draw a sample function gin from gn, find its maximum x∗

i = argmaxx∈X gin(x), and treat it
as a sample from p(x∗|Dn). This is repeated M times, and we get x∗

1, x
∗
2, . . . , x

∗
M , which forms

an empirical distribution p̂(x∗|Dn) that approximates p(x∗|Dn). The next evaluation point is
therefore drawn from p̂(x∗|Dn). Depending on the size of M , each iteration of BO using Thompson
sampling could be costly.

show example

3.3 Information-Theoretic Acquisitions

Both classes of approaches of Sections 3.1 and 3.2 design acquisition functions with the goal of
maximising the magnitude of improvement in our maximiser of the objective function. Although
some interests in uncertainties exist via the exploration components of some of the acquisition
functions, none treats reducing the uncertainties (thus increasing the information) of the overall
maximiser as the goal. There could be benefits in taking that approach, and the information-
theoretic acquisition functions take precisely that path.

For a random variable A with density function p(a), its (differential) entropy is defined as

H(A) = −E[log p(A)] = −
∫

p(a) log p(a)da.

Similarly, for two random variables A,B with joint density p(a, b), we can define their joint
entropy as the entropy of the bivariate random variable, i.e.

H(A,B) = −E[log p(A,B)] = −
∫∫

p(a, b) log p(a, b)dadb.

If A and B are independent, we have p(a, b) = p(a)p(b) for any a, b, and we would get

H(A,B) = −
∫∫

p(a)p(b)[log p(a) + log p(b)]dadb

= −
∫∫

p(a)p(b) log p(a)dadb−
∫∫

p(a)p(b) log p(b)dadb

= −
∫

p(a) log p(a)da−
∫

p(b) log p(b)db

= H(A) +H(B).

21

When A,B are dependent, so p(a|b) ̸= p(a), we uses p(a, b) = p(a|b)p(b) to get

H(A,B) = −
∫∫

p(a|b)p(b)[log p(a|b) + log p(b)]dadb

= −
∫∫

p(a|b)p(b) log p(a|b)dadb−
∫∫

p(a|b)p(b) log p(b)dadb

= −
∫∫

p(a, b) log p(a|b)dadb−
∫

p(b) log p(b)db

=: H(A|B) +H(B).

where we define the conditional (differential) entropy H(A|B) as

H(A|B) = −EA,B [log p(A|B)] = −
∫∫

p(a|b) log p(a|b)dadb = H(A,B)−H(B).

When A and B are strongly correlated, so learning about B is almost like learning about A, the
joint entropy H(A,B) will be close to H(B) and the conditional entropy H(A|B) will be small.

Closely linked to conditional entropy is the notion of mutual information between two random
variables A,B, which is defined as

MI(A,B) =

∫∫
p(a, b) log

p(a, b)

p(a)p(b)
dadb.

We can realise first that

MI(A,B) = H(A) +H(B)−H(A,B) = H(A)−H(A|B) = H(B)−H(B|A)

and second that

MI(A,B) =

∫∫
p(a, b) log p(a|b)dadb−

∫∫
p(a, b) log p(a)dadb

=

∫
B

∫
A

p(a|b) log p(a|b)dap(b)db+H(A)

= H(A)−
∫
B

[
−
∫
A

p(a|b) log p(a|b)da
]
p(b)db

= H(A)− EB [H(A|B)] = H(B)− EA[H(B|A)]

where the last equality follows from symmetry.

To illustrate the above concepts, we will consider the bivariate normal distribution[
A
B

]
∼ N2

([
0
0

]
,

[
1 ρ
ρ 1

])
.

Here ρ ∈ [−1, 1] is the correlation parameter. When ρ = 0, A and B are independent. When ρ
is large in magnitude, A and B are strongly correlated. It can be derived that the entropy of a
normal distribution X ∼ N(µ, σ2) is

H(X) =
1

2
+

1

2
log(2πσ2),

while the entropy of a bivariate normal X with mean vector µ and covariance matrix Σ is

H(X) = 1 + log(2π) +
1

2
log |Σ|

where | · | is the determinant of a matrix. In our case, we have

H (A,B) = 1 + log(2π) +
1

2
log(1− ρ2)

22

and

H(A) = H(B) =
1

2
+

1

2
log(2π).

This means the conditional entropy becomes

H(A|B) = H(B|A) =
1

2
+

1

2
log(2π) +

1

2
log(1− ρ2)

and the mutual information becomes

MI(A,B) = −1

2
log(1− ρ2).

It is now very easy to see how these quantities change as we change the correlation ρ. For tiny
(in magnitude) ρ, we have relatively independent variables, and the mutual information is close
to zero. For large (in magnitude) ρ, we have relatively dependent variables, and the mutual
information is very large.

Finally, we will define the relative entropy of two random variables A,B with densities pA and
pB respectively. The relative entropy, also known as the Kullback-Leibler divergence or KL
divergence, is defined as

KL(pA∥pB) = EA[log pA/pB] =

∫
pA(x) log

pA(x)

pB(x)
dx.

Using this concept, we can also interpret the mutual information as the KL divergence between
the independent coupling A ⊗ B and the actual joint distribution. This also makes immediate
sense of why the mutual information is close to zero when ρ is tiny in magnitude.

These notions of information and entropies will be used in the following acquisition functions.

3.3.1 Entropy Search and Predictive Entropy Search

The main idea of information-theoretic search strategies is that one wishes to consider the moves
that maximise our knowledge (and minimise the uncertainty) about the target object. The target
object could be about the input space, i.e. the input space location of the maximiser x∗ =
argmaxx∈X f(x), or about the output space, i.e. the maximum of the objective function f(x∗).
We will first look at the input space versions, and consider the output space versions below.

Consider our surrogate model gn. We wish to minimise our uncertainty about the maximiser x∗

using a new observation yx which is f(x) when the observation is exact. We use H(x∗|Dn) to
denote the entropy of the distribution of x∗ given data Dn. With a new observation yx evaluated
at x, the entropy of the maximiser becomes H(x∗|yx,Dn).

Quite naturally, we can define the utility function of entropy search as the difference in the two
entropy above, i.e.

uES
n (x) = H(x∗|Dn)−H(x∗|yx,Dn)

and the subsequent acquisition function of entropy search becomes

αES
n (x) = H(x∗|Dn)− Ex[H(x∗|yx,Dn)|Dn] = MI(x∗, yx|Dn) (11)

where the last equality follows from the definition of mutual information.

Before discussing how one might actually compute the above acquisition function, we realise that
by the symmetry of mutual information, we have

MI(x∗, yx|Dn) = H(yx|Dn)− Ex∗ [H(yx|x∗,Dn)|Dn] =: αPES
n (x) (12)

which becomes the acquisition function of predictive entropy search. This acquisition function
could often be easier to find than entropy search.

add details of numerical approximations

23

Figure 10: Entropy Search

24

3.3.2 Max-Value Entropy Search

As explained previously, we can also consider doing an entropy search in the output space. This
makes sense - sometimes when maximising, we do not care about the maximiser but only the
maximum value of the objective function.

Instead of comparing the entropy of the distribution of the maximiser, we will consider the entropy
of the distribution of the global maximum f∗ = max f(x). This gives us the following acquisition
function for max-value entropy search, which uses the formulation of predictive entropy search,

αMES
n (x) = MI(yx, f

∗|Dn) = H(yx|Dn)− Ef∗ [H(yx|f∗,Dn)|Dn]. (13)

add details of numerical approximations

25

Figure 11: Max Value Entropy Search

26

Bibliography

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham, B., Wilson, A. G. and Bakshy, E.
(2020). BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization, Advances in
Neural Information Processing Systems 33.
URL: http://arxiv.org/abs/1910.06403

Pinder, T. and Dodd, D. (2022). GPJax: A Gaussian Process Framework in JAX, Journal of
Open Source Software 7(75): 4455.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian Processes for Machine Learning, Vol. 2,
MIT press Cambridge, MA.

27

	Contents
	Preface
	Introduction
	Motivations of Bayesian Optimisation
	Bayesian Optimisation Framework

	Introduction to Gaussian Processes
	From Gaussian Distribution To Gaussian Process
	Gaussian Properties and Linear Algebra
	Gaussian Process Regression
	Linear Regression
	Regression using GPs

	Covariance Function
	Definitions and General Properties
	Examples of Covariance Functions
	Hyperparameters Tuning

	Common Acquisition Functions
	Improvement-Based Acquisitions
	Probability of Improvement
	Expected Improvement
	Knowledge Gradient

	Bandit-Based Acquisitions
	Upper Confidence Bound
	Thompson Sampling

	Information-Theoretic Acquisitions
	Entropy Search and Predictive Entropy Search
	Max-Value Entropy Search

	Reference

