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Preface

This notes provides a short introduction to Gaussian processes, and describe some of its funda-
mental properties. We will provide two advanced chapters. Chapter 2 will discuss the construction
of a GP that models a vector field, and Chapter 3 will discuss the spectral mixture kernels, which
leverage the spectral representation of a kernel and use that to build more expressive kernels.
Some mathematical backgrounds are provided in the appendix.
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Chapter 1

Introduction to Gaussian
Processes

In this chapter, we will introduce the basics of a Gaussian process (GP) and describe some of its
fundamental properties. In Section 1.1, we motivate the construction of a Gaussian process by
viewing it as a infinite-dimensional extension to a multivariate Gaussian distribution. We state
some basic linear algebra and Gaussian distribution properties in Section 1.2, which will be helpful
in later sections, such as the derivation of GP regression in Section 1.3. Some discussions of the
covariance function of a GP, which is a key design choice, will be stated in Section 1.4 and some
extensions regarding its spectral properties will be mentioned in Section 1.5. Finally, we will
conclude with a brief discussion on the differentiablity and continuity of a GP related to those
properties of a GP’s kernel in Section 1.6.

Most of the material of this chapter are based on Williams and Rasmussen (2006).

1.1 From Gaussian Distribution To Gaussian Process

A stochastic process is a sequence of random variables {Xt}t indexed by t. The index usually
represents the time steps of the process, but it is not always the case. In the case of the Gaussian
process (GP), and in particular the applications of GP that we consider here, the index is not
related to time but to space. This change will become clear soon.

A univariate Gaussian distribution N(µ, σ2) with mean µ and variance σ2 is a common object of
interest. It is one-dimensional, and we can generalise it to make it finite-dimensional, which we
denote by Nd(µ,Σ) and call it a multivariate Gaussian, where the mean vector µ here is now a
d-vector and covariance matrix Σ is a d×d matrix that is symmetric and positive semi-definite.
A matrix Σ is symmetric if ΣT = Σ, and it is positive semi-definite if xTΣx ≥ 0 for all d-vectors
x.

For simplicity, we will let the means and the mean vectors we consider here zero unless stated
otherwise. Consider a multivariate Gaussian with highly correlated dimensions. Normally, when
we plot a sample from a d-dimensional Gaussian, we will plot it in the d-dimensional space. Here,
we will do something different, and plot the values of each dimension in the same plot, sequentially.
In the following plots, we can see how a sample might look like in this format with d = 3, 10, 100.
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Figure 1: Sequentially plotted samples from d-dimensional Gaussian with d = 3, 10, 100.

As shown in Figure 1, the highly correlated Gaussian plotted sequentially makes it look very
much like a (smooth) function. This inspires us to consider the infinite-dimensional extension of
a multivariate Gaussian and use that to approximate a function. This is the idea of Gaussian
process.

Formally, the Gaussian process (GP) y = {y(x)}x∈X is a stochastic process indexed by space
x ∈ X with a mean function µ(·) and a covariance function k(·, ·) such that E[y(x)] = µ(x) and
Cov(y(x), y(x′)) = k(x, x′). We will denote such a process as

y(·) ∼ GP (µ(·), k(·, ·)).

A key feature of a GP is that any finite-dimensional segment (i.e. isolating finitely many points
from the full process) is a multivariate Gaussian distribution.

The covariance function needs to satisfy some requirements for it to be a suitable covariance
for a GP. The requirement is essentially an extension of the requirement of covariance matrices
for a multivariate Gaussian. The covariance function k of a GP needs to be symmetric (so
k(x, y) = k(y, x) for any x, y) and positive semi-definite, in the sense that for any x1, x2, . . . , xn,
the matrix K formed by setting Kij = k(xi, xj) needs to be a positive semi-definite matrix. The
covariance function is a way to ensure the dependency/similarity of points across indices.

The two degrees of freedom of a GP are its mean function and its covariance function, and we
have assumed the mean is zero. It is not hard to assume that the covariance function characterises
the GP to a very large extent. The detailed ways of how properties of the covariance function
imply the properties of the GP, as well as some common covariance functions, will be discussed
in Section 1.4.

A Gaussian process defined on the real line R will have (uncountably) infinite points, meaning
that if we wish to plot it numerically, we would need to generate all infinitely many points, which
is not feasible. Instead, the common practice in such situations is to do a simple discretisation.
Assume that we are interested in a small region of the real line, say [a, b] with a < b, we will
break the interval down into smaller equal-length pieces and use the endpoints of those pieces to
approximate the full trajectories. To be more precise, if we wish to break the interval down into
n pieces, we would have

a = x1 < x2 < · · · < xn = b

where xi+1 − xi = (b − a)/(n − 1) for i = 1, 2, . . . , n − 1. Then, using the property of GP, the
distribution of any finite points will follow a multivariate Gaussian distribution. If we denote the
covariance matrix of the points x = (x1, x2, . . . , xn) by K where Kij = k(xi, xj) and k is the
covariance function of the GP, then we have

y(x) =


y(x1)
y(x2)

...
y(xn)

 ∼ Nn(µ(x),K)
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so generating those points would be straightforward. The gaps between the points will be ex-
trapolated by a straight line. We can also the variance of the multivariate Gaussian to draw a
confidence region of the generated process.

Figure 2: Gaussian Processes generated with different number of segments.

1.2 Gaussian Properties and Linear Algebra

In this section, we will look at several key properties of Gaussian random variables and Gaussian
processes that will play a fundamental role in the rest of this note. Some derivations will be
included.

Consider we have a multivariate Gaussian distribution Nd(m,Σ) with mean vector m and covari-
ance matrix Σ. The probability density function is given by

p(x;m,Σ) = (2π)−d/2|Σ|−1/2 exp

[
−1

2
(x−m)TΣ−1(x−m)

]
.

Next, consider two multivariate Gaussian X ∼ Nd1(mx, A) and Y ∼ Nd2(my, B) where d1 and d2
may not be the same. The joint distribution of X and Y is given by[

X
Y

]
∼ Nd1+d2

([
mx

my

]
,

[
A C
CT B

])
where C represents the covariance matrix between X and Y . If X and Y are independent, then
C is zero. With this joint distribution, we would be interested in the marginal distributions and
the conditional distributions. We have, for marginals,

p(x) =

∫
p(x, y)dy, X ∼ Nd1(mx, A)

p(y) =

∫
p(x, y)dx, Y ∼ Nd2(my, B).

For conditionals, we have

p(x|y) = p(x, y)/p(y), X|Y = y ∼ N(mx + CB−1(y −my), A− CB−1CT )

p(y|x) = p(x, y)/p(x), Y |X = x ∼ N(my + CTA−1(x−mx), B − CTA−1C).

The derivation of the marginal distributions is easy to see, which we omit. For conditionals, it is
more complicated and we will establish it below. One identity that we will use is the formula for
the inverse of the block matrix, which is easy to verify.

Proposition 1.1 (Inverse of Block Matrix). For block matrix[
A B
C D

]
where A,B,C,D are matrices on their own, the inverse[

A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.
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Using the above result, we can derive the conditional distribution. We will just derive the case of
X|Y = y, and the distribution of Y |X = x is similar.

Proposition 1.2. For joint distribution of X1 and X2 where X1 is of dimension n1, X2 is of
dimension n2 and the joint is of dimension n = n1 + n2, it is given by[

X1

X2

]
∼ N(µ,Σ) = N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

we have the conditional distribution

X1|X2 = x2 ∼ N(µ1|2,Σ1|2).

where µ1|2 = µ1 +Σ12Σ
−1
22 (X2 − µ2) and Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.

Proof. Using the definition of density, we have

p(x1|x2) =
p(x1, x2)

p(x2)
=

(2π)−n/2|Σ|−1/2 exp
[
− 1

2 (x− µ)TΣ−1(x− µ)
]

(2π)−n2/2|Σ22|−1/2 exp
[
− 1

2 (x2 − µ2)TΣ
−1
22 (x2 − µ2)

]
= (2π)−n1/2|Σ|−1/2|Σ22|1/2 exp

[
−1

2
(x− µ)TΣ−1(x− µ) +

1

2
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

]
.

Following the inverse of block matrix formula of Proposition 1.1, we have the following if we focus
just on the exponential

− 1

2
(x− µ)TΣ−1(x− µ) +

1

2
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

= −1

2
(x− µ)T[
(Σ11 − Σ12Σ

−1
22 Σ21)

−1 −(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

−Σ22Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1 Σ−1
22 +Σ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

]
(x− µ) +

1

2
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

= −1

2
(x1 − µ1)

T (Σ11 − Σ12Σ
−1
22 Σ21)

−1(x1 − µ1)

+ (x1 − µ1)
T (Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)

− 1

2
(x2 − µ2)

T [Σ−1
22 +Σ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22 ](x2 − µ2)

+
1

2
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

= −1

2
(x1 − µ1)

T (Σ11 − Σ12Σ
−1
22 Σ21)

−1(x1 − µ1)

+ (x1 − µ1)
T (Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)

− 1

2
(x2 − µ2)

TΣ−1
22 Σ21(Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2).

If we rearrange them, the above term would become

−1

2
[x1 − µ1 − Σ12Σ

−1
22 (x2 − µ2)]

T (Σ11 − Σ12Σ
−1
22 Σ21)

−1[x1 − µ1 − Σ12Σ
−1
22 (x2 − µ2)]

which yields the mean and covariance of the conditional distribution, as desired.

Another nice property of Gaussian distributions is that a linear combination of Gaussian is still
Gaussian. For example, for multivariate X, AX +B is a multivariate distribution too where A is
a matrix and B is a vector with the right dimension. This can be formally established using the
moment-generating function, which we will omit.
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Proposition 1.3. For multivariate Gaussian X ∼ N(µ,Σ), given matrix A and vector B with
the right dimension, we have

AX +B ∼ N(Aµ+B,BΣBT ).

A consequence of the above result is that the sum of two multivariate Gaussian with the same
dimension is also a multivariate Gaussian.

Proposition 1.4. For independent multivariate Gaussian X ∼ N(µ1,Σ1) and Y ∼ N(µ2,Σ2)
with the same dimension, we have

X + Y ∼ N(µ1 + µ2,Σ1 +Σ2)

The above result can be obtained by first getting the joint distribution ofX and Y , then considering
the linear transformation with A = I and B = 0.

Another result that we will state but not derive is the product of two Gaussian densities is
proportionate to a Gaussian density.

Proposition 1.5. Let X ∼ N(a,A) with density p(x) and Y ∼ N(b, B) with density p(y), we
have

p(x)p(y) ∝ p(z)

where p(z) is the density of Z ∼ N(c, C) and

C = (A−1 +B−1)−1, c = C(A−1a+B−1b).

1.3 Gaussian Process Regression

The results mentioned in the previous section will play an important role in this section where
we consider doing the task of regressions using Gaussian processes. In the field of supervised
learning (where we have both data and their label, as opposed to unsupervised learning where
we only have data and not labels), the two main tasks are regression and classification. They
are essentially the same problem, but regression deals with continuous labels, and classification
deals with discrete labels. One should also know that Gaussian process regression is used in many
areas, and it is often called kriging in the spatial statistics literature.

1.3.1 Linear Regression

The problem of regression studies the relationship between covariates and the response using data.
For example, in many scientific disciplines, we are interested in understanding the relationship
between various factors (called covariates) and some key metric (called response), e.g. the
relationship between biological measurements (such as weight, height, and blood pressure) and
the hazard rate of a disease (such as diabetes). This has been heavily studied throughout the
history of statistics and machine learning. One of the most basic types of regression, which is the
topic here, is linear regression where we assume a linear relationship between the covariates and
the response. We will also take a Bayesian approach.

If we denote the covariates by a vector x and the response by y (which we assume to be one-
dimensional here, although it can be generalised), the linear regression assumes the following
model:

f(x) = xTw, y = f(x) + ε (1)

where w is the weight vector for each of the covariates, f(x) is the (latent) true function repre-
senting the relationship between x and y, while ε represents the noise vector, and we assume it is
a Gaussian random variable here with mean zero and variance σ2

n, i.e. ε ∼ N(0, σ2
n) where n is

the size of the data set. Normally, one of the covariates in x will represent the bias of the model,
and that element in x is usually put as 1.
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The Equation (1) represents the general formula, and for each data point, indexed by i, with
response yi and covariates xi. The likelihood of the model for observing a data point (xi, yi) is
then

p(yi|w, xi) =
1√
2πσn

exp

[
− (yi − xTi w)

2

2σ2
n

]
(2)

due to the Gaussianity of the noise ε.

We assume the variance of the noise is known, which can usually be estimated using an empirical
variance estimator. This assumption means that the only unknowns of our linear regression
problem are the values of the weight vector w, which we aim to infer using data. In the Frequentist
setting, the likelihood described in Equation (2) is all we need - we just multiply the likelihoods for
all the data points, and find the w values that maximise the multiplied quantity. In the Bayesian
setting, we need more than that. First, we need to impose a prior distribution to the weight vector
w, and then compute the posterior by multiplying the prior and the likelihood, then normalise,
using the Bayes formula. For prior of weight vector w, we will use

w ∼ N(0,Σp). (3)

Some further comments on the prior choices will be stated later on.

Combining the prior of Equation (3) and the likelihood of Equation (2), we have the posterior
distribution as follows using Proposition 1.5

p(w|x, y) ∝ p(w)p(y|w, x)

∝ exp

[
− 1

2σ2
n

(y − xTw)T (y − xTw)

]
exp

[
−1

2
wTΣ−1

p w

]
∝ exp

[
−1

2
(w − w̄)T

(
1

σ2
n

xxT − Σ−1
p

)
(w − w̄)

]
where w̄ = σ−2

n (σ−2
n xxT +Σ−1

p )−1xy, making the posterior the density of

w|x, y ∼ N(w̄, A−1), A := σ−2
n xxT +Σ−1

p (4)

which is a very nice conjugacy. An estimator for the weights given to the data will be some
summary statistics of the posterior distribution, such as the mean or the mode. In this case, due
to the geometry of the Gaussian distribution, the mean and the mode are identical and are identical
to the maximum likelihood estimator when we formulate the problem as a ridge regression in
the frequentist literature. If we use a different prior for w, such as the slab-and-spike prior, we
could recover the lasso regression maximum likelihood estimator.

If we are fed with a new data point without the response to the model, we are essentially hoping
to make a prediction using the weight vector w|x, y we have inferred and the observed covariates
x∗. The prediction distribution f∗ will have the distribution

p(f∗|x∗, x, y) =
∫
p(f∗|x∗, w)p(w|x, y)dw, f∗ ∼ N

(
1

σ2
n

xT∗A
−1xy, xT∗A

−1x∗

)
(5)

using again the result of Proposition 1.5.

In general, there are two main goals of regressions: (1) understanding the relationship between
covariates and response, (2) predicting the response for new data points. The first point is to make
analyses and comments based on our updated knowledge of weights w, while the second point is
to exploit the predictive distribution of Equation (5). In our case, the relationship between the
covariates and the response is forced to be linear by construction, which is like ‘fitting a straight
line’. In general, as we expand the class of functions for the possible relationships f(x) (such as
in the case of GLM), we would be ‘fitting a curve’. In the next part, we will study how one can
do curve-fitting using GPs.
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1.3.2 Regression using GPs

Linear regression is fitting a linear function f(x) = xTw using the observed covariates and the
response variable. A Gaussian process, as we have described in Section 1.1, can be used to
approximate a lot of functions. This inspires us to use a GP to model the relationship f(x). An
important assumption that we will make here is to assume the noise ε is always Gaussian, which
allows us to leverage the nice conjugacy of Gaussian random variables. This will become clear
soon.

First, we will consider the simple problem of regression with exact observation, meaning that the
observed data points (xi, yi)i contain no noise, so we get what we see. In this case, we will use
x to denote all the observed covariates and f to denote all the observed responses. In this case,
extending what we have described at the end of Section 1.1, we can have the joint distribution
of f and f∗ where f∗ is the points that we use to approximate the GP trajectory discretised at
points x∗ as [

f
f∗

]
∼ N

(
0,

[
K(x, x) K(x, x∗)
K(x∗, x) K(x∗, x∗)

])
where K represents the covariance matrix constructed by measuring the covariance between any
two points using the covariance function k of the GP. As our observations do not have noise, the
covariance matrix is exactly as it is. Consequently, using Proposition 1.2, we know that

f∗|x, x∗, f ∼ N(K(x∗, x)K(x, x)−1f,K(x∗, x∗)−K(x∗, x)K(x, x)−1K(x, x∗)

which essentially collapses the process at the observed points x, f due to the absence of noise in
observations. This gives us the regression curve after observing the data (x, f).

Figure 3: Latent Function of Gaussian Process Regression with 20 data points and no noise, using
GPJax package of Pinder and Dodd (2022).

Figure 4: Posterior of Gaussian Process Regression with 20 data points and no noise, using GPJax
package of Pinder and Dodd (2022).

A straight-forward and probably necessary extension is to consider the case where we make not
exact but noisy observations where the noise is

ε ∼ N(0, σ2
n).
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In this case, if we observe (xp, yp) and (xq, yq), their covariance will be

Cov(yp, yq) = k(xp, xq) + σ2
nδpq

where δab = 1 when a = b and is zero otherwise. We can then generalise it to get

Cov(y) = K(x, x) + σ2
nI

and [
y
f∗

]
∼ N

(
0,

[
K(x, x) + σ2

nI K(x, x∗)
K(x∗, x) K(x∗, x∗)

])
.

This then leads to the following conditional distribution, which is the regression curve after the
observations

f∗|x, x∗, f ∼ N(f̄∗,Cov(f∗))

f̄∗ := K(x∗, x)[K(x, x) + σ2
nI]

−1f,

Cov(f∗) := K(x∗, x∗)−K(x∗, x)[K(x, x) + σ2
nI]

−1K(x, x∗).

Another quantity of interest is the marginal likelihood of observing the data p(y|x) given the
model. Notice that here we are not specifying the dependencies of parameters in any of our
expressions explicitly, we can certainly imagine the existence of some hyperparameters in our
kernel function, as well as the variance of the observation noise being unknown. Knowing the
marginal likelihood p(y|x) is helpful for estimating these quantities of interest, and an expression
for the marginal likelihood is

f |X ∼ N(0,K), y|f ∼ N(f, σ2
nI)

p(y|x) =
∫
p(y|x, f)p(f |y)df

log p(y|x) = −1

2
yT (K + σ2

nI)
−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π

(6)

when we set a Gaussian prior to f |X as this leads to y ∼ N(0,K + σ2
nI).

Figure 5: Latent Function of Gaussian Process Regression with 20 data points and noise, using
GPJax package of Pinder and Dodd (2022).

Figure 6: Posterior of Gaussian Process Regression with 20 data points and noise, using GPJax
package of Pinder and Dodd (2022).
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1.4 Covariance Function

In this section, we will explore more concretely the covariance functions of a Gaussian process.
The two degrees of freedom of a Gaussian process are the mean function and the covariance
function, and we often set the mean function to be zero, so the only real variability of a GP is
the covariance function. Different choices of the covariance function will certainly lead to very
different GPs. In this section, we will first outline some general properties and definitions related
to covariance functions, then study a few commonly used covariance functions in detail.

1.4.1 Definitions and General Properties

As mentioned in Section 1.1, a GP y(·) is a stochastic process with the mean function µ(·) and the
covariance function k(·, ·), such that any finite points of the GP will form a multivariate Gaussian
distribution. Because of this requirement, the covariance function needs to be (1) symmetric,
i.e. k(a, b) = k(b, a) (2) positive semi-definite, i.e.∫

k(x, x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0

for all f ∈ L2(X,µ) where µ is some base measure and X is the support of the GP. Such a
covariance function k will also be called a kernel, due to its link with the theory of integral
operators.

For a set of points x = {xi}ni=1, we can compute its Gram matrix K using the kernel k such
that K ∈ Rn×n and Kij = k(xi, xj). The Gram matrix in the context of GP will be used as the
covariance matrix for the joint distribution of the points x = {xi}i.

One can view the kernel as a way to measure the similarity between two points. Since we would
wish two points x, x′ close to each other to be very similar - so highly dependent - in order to
achieve some degrees of smoothness and the regularities of the overall GP, the quantities x−x′ and
∥x− x′∥ would be of major importance. A covariance function that can be defined as a function
of x− x′ is called stationary (in the wide sense), or wide-sense stationarity (WSS), as it will
be invariant to translations in the input space/support. A covariance function that can be defined
as a function of ∥x− x′∥ is called isotropic as it will be invariant under all rigid motions.

1.4.2 Examples of Covariance Functions

Two examples of covariance functions will be introduced here - the squared exponential (SE)
covariance function and the Matérn class covariance function.

The squared exponential (SE) covariance function kSE is defined by

kSE(x, x
′) = exp

[
−∥x− x′∥2

2l2

]
=: exp

[
− r2

2l2

]
= kSE(r)

where we define r := ∥x − x′∥ and l > 0 is the length-scale of the kernel. From the definition,
it is straightforward to notice that the SE kernel is stationary and isotropic, and the value of the
length-scale characterises the degree of similarity between two nearby points - the higher the l,
the more dependent two nearby points become. One should realise by the expression of kSE that
it is more of an exponentiated quadratic than a squared exponential, therefore some authors will
denote the same kernel as the exponentiated quadratic kernel.

Since the SE kernel is defined by an exponential function, it is therefore infinitely differentiable
(or smooth). This property will become useful when we discuss the differentiability of a GP in
Section 1.6.
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The Matérn class kernels is defined by

kMatérn(x, x
′) =

21−ν

Γ(ν)

(√
2ν∥x− x′∥

l

)ν
Kν

(√
2ν∥x− x′∥

l

)

=:
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2ν

l
r

)
= kMatérn(r)

where we define r := ∥x− x′∥, l > 0 is the length-scale of the kernel, Γ is the Gamma function,
ν > 0 is the smoothness parameter of the kernel, and Kν is the modified Bessel function of the
second kind. The smoothness parameter ν usually is chosen to be half integers, as ν = p+1/2 for
non-negative integer p. For example, we have the following three examples of ν:

k
ν=1/2
Matérn(r) = exp

(
−r
l

)
k
ν=3/2
Matérn(r) =

[
1 +

√
3r

l

]
exp

(
−
√
3r

l

)

k
ν=5/2
Matérn(r) =

[
1 +

√
5r

l
+

5r2

3l2

]
exp

(
−
√
5r

l

)
and we can also show that using the definition, as ν → ∞, kMatérn(r) → kSE(r).

1.4.3 Composing Kernels

sum of kernels is a kernel. product of kernels is a kernel.

1.4.4 Hyperparameters and Model Selection

In Section 1.3, we have focused on how one can do curve fitting using GPs with a fixed, pre-
determined kernel. However, as we have seen in earlier parts of this section, there are multiple
choices for kernel, and each kernel also depends on tuning hyperparameters that will influence the
GP. Therefore, in practice, one should really consider the problem of selecting kernels and tuning
hyperparameters as part of the curve-fitting process.

Model selection is a key and well-studied problem in statistics, especially for regression. ...

Assuming that we have fixed the choice of kernel, we then need to worry about how to tune the
hyperparameters. We will treat the hyperparameters as additional parameters of the overall GP
model while fitting the GP during regression. If one wishes to do regression using maximum
likelihood, then it is quite straightforward - just pick the values for the hyperparameters (and
the weight vector for covariates) that maximise the joint likelihood function using all the data. If
one wishes to do regression using a Bayesian approach, then one would need to pose some prior
on the weight vector, as well as the hyperparameters of the kernel, then compute the posterior
distribution of all the parameters of interest and do the estimation using some summary statistics
of the posterior, computed/estimated using conjugacy or Monte Carlo methods (such as MCMC).

1.5 Spectral Representation of Stationary Kernels

A very key result of stationary covariance functions is the Bochner Theorem, which states that
all positive semi-definite functions have a unique spectral representation.

Theorem 1.6 (Bochner Theorem). A complex-valued function k on Rd is the covariance function
of a wide-sense stationary, continuous in mean square complex-valued random process on Rd if
and only if it can be represented as

k(τ) =

∫
Rd

exp[2πis · τ ]dµ(s)

where µ is a non-negative finite probability measure.
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A proof of the above result can be found in Section 1.4.3 of Rudin (2017). Note that the original
result does not require k to be related to a stochastic process, and is more general to any positive
semi-definite functions k(τ). The key message of the above theorem is the equivalence between
the class of positive semi-definite functions and the class of their spectral representations.

If µ admits a density S(s), then the above equation becomes

k(τ) =

∫
Rd

exp[2πis · τ ]S(s)ds

which is the Fourier transform of k. This relationship inspires people to call the density S as
the spectral density or the power spectrum for covariance function k. We can recover the
covariance function from the spectral density using the inverse Fourier formula, and we get the
following pairs of identities

k(τ) =

∫
S(s) exp[2πis · τ ]ds, S(s) =

∫
k(τ) exp[−2πis · τ ]dτ.

This result is, in fact, a key result called the Wiener-Khintchine theorem, which is formally stated
below.

Theorem 1.7 (Wiener-Khintchine Theorem). A real-valued function k(τ) on Rd is a covariance
function if and only if it can be represented in the form

k(τ) =

∫
Rd

exp[2πis · τ ]dF (s)

where F (s) is a distribution function on Rn, and is often called the spectral distribution func-
tion. When F admits a density S, we have

k(τ) =

∫
Rd

exp[2πis · τ ]S(s)ds.

Referring back to the Fourier transform, what we have been doing here is highlighting the transfor-
mation of the covariance function k in the time domain to the spectral density S in the frequency
domain. A key advantage of this equivalence is that the requirement for S for the corresponding
k to be positive semi-definite is merely the fact that S is non-negative for any s, which is much
easier to verify.

Another attractive property of the spectral density is that we may be interested in understanding
the characteristics of the stochastic process better in the frequency domain rather than the time
domain.

1.5.1 Spectral Densities Examples

Here we will just state some examples of spectral densities of common kernels.

The squared exponential (SE) kernel on D dimension

kSE(r) = exp

[
−r

2

2l

]
is stationary, and its spectral density is given by

SSE(s) = (2πl2)D/2 exp(−2π2l2s2).

The Matérn class kernel on D dimension

kMatérn(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2ν

l
r

)
has its spectral density as

S(s) =
2DπD/2Γ(ν +D/2)(2ν)ν

Γ(ν)l2ν

(
2ν

l2
+ 4π2s2

)−ν−D/2

.
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1.6 Differentiability of Gaussian Processes

A Gaussian process is a special case of a random field, which is any stochastic process supported
on some domain, such as Rd. An interesting mathematical question to ask is what is the meaning
of continuous and differentiable in this context. As we can see in Figure 2, the GP realisations
are very smooth, to the point that we can almost certainly call them smooth. However, those
are only one realisation of the stochastic process. One way to do so is to define continuity and
differentiability in the mean square. Consider a converging sequence x1, x2, . . . in the support of
the random field that converges to x∗. A random field f(x) is said to be continuous in mean
square at x∗ if

E∥f(xk)− f(x∗)∥2 → 0

as k → ∞. If f is continuous in a mean square for all x∗ ∈ A, then f is continuous in mean
square over A. An equivalent way to check for the continuity in mean square of a random field f
is to look at the continuity of its covariance function. Assuming that the mean function of f is
continuous, then the random field is continuous in mean square at t if and only if its covariance
function k(s, s′) is continuous at s = s′ = t. Therefore, if the covariance function k is continuous
at all diagonal points s = s′, the overall random field f will be continuous too (Adler, 2010). If
the random field is stationary, so the covariance function only depends on τ = s− s′, then f will
be continuous if and only if k(τ) is continuous at τ = 0.

Similarly, for f to be differentiable in mean square for the i-th coordinate at x, we must have

∂f(x)

∂xi
= limh→0

f(x+ hei)− f(x)

h
<∞

where ei is the unit vector in the i-th coordinate and lim is the limit in mean square.

For a Gaussian process y ∼ GP (0, k) with scalar output and one-dimensional support (assumed
for simplicity, can be generalised) to be differentiable in mean square, it suffices to show that

E

[∥∥∥∥y(x+ h1)− y(x)

h1
− y(x+ h2)− y(x)

h2

∥∥∥∥2
]
→ 0

as h1, h2 → 0 using the Cauchy criterion of convergence. We can see that, the quantity of interest
can be decomposed into three terms by opening up the square. For example, we have

E[[y(x+ h1)− y(x)][y(x+ h2)− y(x)]] = k(x+ h1, x+ h2)− k(x+ h1, x)− k(x, x+ h2) + k(x, x)

which becomes ∂x∂xk(x, x), if it exists, as h1, h2 → 0 by definition. The same limit result holds
for the two other terms of the square

E[[y(x+ h1)− y(x)][y(x+ h1)− y(x)]], E[[y(x+ h2)− y(x)][y(x+ h2)− y(x)]].

Therefore, as long as ∂x∂yk(x, y) exists, the GP y ∼ GP (0, k) will be differentiable in mean square.
As a corollary, if k is smooth (i.e. infinitely differentiable), then the GP is smooth too. Using a
similar logic, as a corollary, we have that for y ∼ GP (m, k) such that both m, k are differentiable,
we have

y′ ∼ GP (m′, k′)

and the derivative of a GP is still a GP.

Due to the linearity of the covariance function, we can also know that the covariance of derivatives
is the derivatives of the covariance. For example, in the case of GP with differentiable kernels, we
can have the following identities:

Cov[∂xy(x1), y(x2)] = ∂x1
Cov[y(x1), y(x2)].

This will become very helpful when we are interested in vector fields and derivative observations.

Another interesting consequence of the above derivative properties is related to how the derivative
of the time-domain (stationary) kernel is passed down to the frequency-domain. Consider we
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have a stationary kernel k(τ) in the time domain, and its frequency-domain counterpart S(s) is
provided by

k(τ) =
1

2π

∫
S(s) exp[is · τ ]ds, S(s) =

∫
k(τ) exp[−is · τ ]dτ.

where we do a slight change-of-variable to allow simple notations later on. It is not hard to see
that the above formulation is equivalent to the formulation in Theorem 1.7. Since we have certain
smoothness conditions on the functions that allow us to interchange derivatives and integrals, we
have

∂2ttk(τ) = ∂2tt
1

2π

∫
S(s) exp[is · τ ]ds

=
1

2π

∫
S(s)∂2tt exp[is · τ ]ds

=
1

2π

∫
S(s)(is)2 exp[is · τ ]ds

=
1

2π

∫
[−s2S(s)] exp[is · τ ]ds

which implies the frequency-domain counterpart of ∂2ttk(τ) is −s2S(s).
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Chapter 2

Gaussian Processes for Vector
Fields

In Chapter 1, we have looked at Gaussian processes with scalar output. In this chapter, we will
look at Gaussian processes with vector output, and in particular GPs with 2-dimensional vector
field output.

One way to think about this problem is that we now have two output streams instead of one, so
we could model two GPs (independently, perhaps) using the same training data, and produce a
prediction for each of the two outputs separately. This does assume, however, the independence
between the two outputs. A slightly improved way of doing such modelling is by doing a joint
modelling of the two streams while imposing relatively weak and restrictive notions of dependency
between the two streams of outputs. This will be discovered more in Section 2.2.

Another approach is to leverage some physical knowledge of the system and the vector field and
do some smarter decomposition that enables us to express more types of dependency. One such
approach is done via the Helmholtz decomposition of the vector field and will be discussed in
Section 2.3. This approach, however, is more restrictive as it assumes the object of interest is a
vector field of a physical system. We will showcase an example of modelling the ocean currents
using a GP in Section 2.4.

The problem of modelling multiple outputs using GPs has a diverse range of applications. In
some settings, we will call the built GPs multi-task or multi-output GPs, as each output
stream represents one task that we are interested in. In such scenarios, we may have missing
data issues (i.e. we know some of the outputs for some sets of data, while the other outputs are
missing). This field of work is often called transfer learning, where we move our knowledge
about one task to another (similar) task, via the dependency among tasks. This line of work will
not be discussed here, and interested readers are referred to Bonilla et al. (2007).

2.1 Basics of Vector-Output GP

This section will look at the notations and basics of regression with vector-output GP. Apart
from some tedious notations and more involved manipulations with matrices, it is the same as
scalar-output GP regression discussed in Section 1.3. The notations are based on Alvarez et al.
(2012).

We will still have the regression setup of

y = f(x) + ε

where x is the input, y is the output, and ε is the noise. The relationship f is to be modelled
using a Gaussian process. In Chapter 1, we allow x to be a vector, but almost always state that
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y needs to be a scalar quantity. We have also assumed that ε is a Gaussian noise. Here, we will
relax the assumption on y and allow it to be a vector too.

A consequence of the relaxation is that we need more notations and more thoughts are needed to
consider various cases. We will denote the dimension of the output y as D, so y ∈ RD. For a vector
field output, D = 2. We also denote the dimension of the input for the d-th output as Nd, where
d = 1, 2, . . . , D. This allows the dimensionalities of input for different outputs to be different. This
will not be necessary for the case of vector field modelling but could be relevant to more general
multi-task GPs where some but not all data are shared among the tasks. Therefore, the data for
each of the d output will be Sd = {(xd,i, yd,i)}Nd

i=1 and the full data set will be S =
⋃D
d=1 Sd.

If Nd is the same for all d, and xd,i is the same for fixed i and varying d (so the input data
for each stream/coordinate of the output is identical), then the overall model is called isotopic.
The model is called heterotopic otherwise. In our case, the model is isotopic as the input
data are the geographical location and the output data is the vector at that location of the
vector field. Therefore, to simplify the notation, we will not be bothered with distinguishing
between Nd for different d, but instead denote the shared dimension as N so the input becomes
x = {x1, x2, . . . , xN}, the output becomes y = {y1, y2, . . . , yD} and the relationship function
f = (f1, f2, . . . , fD) is a vector-valued function mapping from RN to RD.

With this setup, the next thing we would like to know is how exactly we can model f using a GP,
in particular, if we want to have

f ∼ GP (m, k),

what should m and k be? For simplicity, we can still assume m = 0, although in this case m is
no longer a scalar zero, but a D-vector zero. For kernel k, it is slightly more involved.

Here, k is no longer a positive semi-definite function with scalar output as in the case of Chapter
1, but rather a function with matrix output that is symmetric and positive semi-definite to some
extent. Let X denote the input space, we have

k : X ×X → RD×D

and it needs to be symmetric (i.e. k(x, x′) = k(x′, x) for any x, x′ ∈ X) and for each x, x′, the
output matrix k(x, x′) needs to be positive semi-definite. Since the output is a matrix, we can
define k entry-wise such that

kd,d′(x, x
′) = [k(x, x′)]d,d′ =: R ((x, d), (x′, d′))

for some scalar kernel R defined on the space X×{1, 2, . . . , D}, and the above quantity represents
the covariance between output fd(x) and fd′(x

′). Furthermore, if we have a set of inputs x =
{x1, x2, . . . , xN}, the kernel k(x,x) will be a matrix of matrices

k(x,x) =


k1,1(x,x) k1,2(x,x) . . . k1,D(x,x)
k2,1(x,x) k2,2(x,x) . . . k2,D(x,x)

...
... . . .

...
kD,1(x,x) kD,2(x,x) . . . kD,D(x,x)

 ∈ RND×ND

where each ki,j(x,x) is a RN×N matrix on its own.

With these ready, we can write down the distributions for GP regression with vector output. For
simplicity, we will only consider the case where the observations are noiseless and exact. The case
of noisy observations can be obtained similarly by adding some additive noise matrices at the right
places, not too different from the case in Section 1.3.

Given a set of inputs x, the GP f ∼ GP (0, k) is given by

f(x) ∼ N(0, k(x,x)).

Assuming we have a set of corresponding outputs y and we assume the variance of the noises for
the d-th coordinate of the output (same noise variance for each input across outputs) is σ2

d and
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let Σ ∈ RD×D denote the diagonal matrix with σ2
d at d, d-th entry. This gives us the likelihood

y|f ,x,Σ ∼ N(f(x),Σ)

and the predictive distribution for a new set of inputs x∗ becomes

f(x∗)|f ,x∗,x,y, ϕ ∼ N(f∗(x∗), k∗(x∗,x∗))

where

f∗(x∗) = kx∗(k(x,x) +Σ)−1y

k∗(x∗,x∗) = k(x∗,x∗)− kx∗(k(x,x) +Σ)−1kTx∗

Σ = Σ⊗ IN

with y ∈ RND being the concatenation of D-vectors y for each of the N inputs, kx∗ ∈ RD×ND

being the concatenation of D ×D matrix k(x∗, xj) where j = 1, 2, . . . , N , and ϕ is the hyperpa-
rameter choices of the kernel k. The operation ⊗ is the Kronecker product, and more information
is provided in Section A.1. The above equations are direct extensions to the regression outputs of
Section 1.3, and can also be found in Alvarez et al. (2012).

2.2 Velocity Decomposition

In this section, we will look at a direct decomposition of multi-output GP by considering each
coordinate of the output separately, with potentially some correlation among coordinates. The
methods outlined in this section could be applied to more general multi-output GP problems,
although the focus here will be on the particular case of modelling a vector field using GPs.

A class of matrix output kernels is the separable kernels, and it is the class that we will pick our
kernels from in this section. Consider a matrix kernel k, it is separable if we can write it in the
form of

(k(x, x′))d,d′ = kS(x, x
′)kT (d, d

′) k = S ⊗ T

where S ∈ RN×N , T ∈ RD×D are symmetric, positive semi-definite matrices. The reason why
such kernels are called separable is obvious, as we can separate the contribution from inputs and
outputs in the kernel value. Since the sum of kernels is also a kernel, the sum of separable kernels
is also a kernel. In the case where T = ID, we are treating the D streams of output independently,
as there is no correlation assumed between them.

Building separable kernels is then easy, as we can pick a kernel for input and output separately, and
combine them using the Kronecker product. We could also add up a few independent separable
kernels to get more expressive sum of separable kernels. This is known as the linear model
of coregionalisation in the geostatistics literature (Journel and Huijbregts, 1978).

Consider a two-dimensional vector field that is sufficiently regular (at least twice continuously
differentiable), and we denote it as F , so F : R2 → R2. We further denote the component of F as
u and v so F (x) = (u(x), v(x))T .

In the case of velocity decomposition, we will model u, v as two Gaussian processes with mean
zero and kernel ku, kv respectively, and the two processes are independent. So, the velocity kernel
becomes

kvel(x, x
′) =

[
ku(x, x

′) 0
0 kv(x, x

′)

]
.

Then, ku, kv can be picked separately. Naturally, we can see that this decomposition ignores any
potential dependency between the data for two directions of the vector field.
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2.3 Helmholtz Decomposition

Consider a two-dimensional vector field that is sufficiently regular (at least twice continuously
differentiable), and we denote it as F , so F : R2 → R2. We further denote the component of F as
u and v so F (x) = (u(x), v(x))T .

According to the Helmholtz decomposition in 2D (see Definition A.3 for more information), we
can find a pair of scalar functions Φ,Ψ such that

F =

[
u
v

]
= grad Φ + rot Ψ.

In the case of Helmholtz decomposition of Berlinghieri et al. (2023), we will give a kernel to each
of Φ,Ψ, denoted by kΦ, kΨ respectively.

Obviously, if we let u, v be Gaussian processes, the joint vector field is also a Gaussian process
and the joint distribution of Gaussian is still Gaussian. Here, as we are letting Φ,Ψ be Gaussian
processes, will the vector field F be a Gaussian process? The answer is yes, and it is explained in
the following result.

Proposition 2.1 (Prop 3.1 of Berlinghieri et al. (2023)). Consider a twice continuously differen-
tiable vector field F : R2 → R2 with Helmholtz decomposition F = grad Φ + rot Ψ. If we have,
independently,

Φ ∼ GP (0, kΦ), Ψ ∼ GP (0, kΨ)

where kΦ, kΨ are kernels such that Φ,Ψ have sample paths that are continuously differentiable
almost surely, then

F ∼ GP (0, kHelm)

where for x, x′ ∈ R2, we have

kHelm(x, x′) =

[
∂2x1x′

1
kΦ(x, x

′) + ∂2x2x′
2
kΨ(x, x

′) ∂2x1x′
2
kΦ(x, x

′)− ∂2x2x′
1
kΨ(x, x

′)

∂2x2x′
1
kΦ(x, x

′)− ∂2x1x′
2
kΨ(x, x

′) ∂2x2x′
2
kΦ(x, x

′) + ∂2x1x′
1
kΨ(x, x

′)

]
.

Proof. According to the result in Section 1.6, we know that

Cov[∂xf(x), f(x
′)] = Cov

[
lim
h→0

1

h
[f(x+ h)− f(x)], f(x′)

]
= lim
h→0

1

h
(Cov[f(x+ h), f(x′)]− Cov[f(x), f(x′)])

= ∂xCov[f(x), f(x
′)]

since Cov is linear. Therefore, denoting x = (x1, x2)
T and x′ = (x′1, x

′
2)
T while setting the entries

of the covariance matrix as Cuu, Cuv, Cvu, Cvv, we have

Cuu = Cuu(x, x
′) = Cov[u(x), u(x′)]

= Cov
[
∂x1

ϕ(x)− ∂x2
ψ(x), ∂x′

1
ϕ(x′)− ∂x′

2
ψ(x′)

]
= ∂2x1x′

1
Cϕϕ − ∂2x2x′

1
Cψϕ − ∂2x1x′

2
Cϕψ + ∂2x2x′

2
Cψψ

Cuv = Cuv(x, x
′) = Cov[u(x), v(x′)]

= Cov
[
∂x1

ϕ(x)− ∂x2
ψ(x), ∂x′

2
ϕ(x′) + ∂x′

1
ψ(x′)

]
= ∂2x1x′

2
Cϕϕ − ∂2x2x′

2
Cψϕ + ∂2x1x′

1
Cϕψ − ∂2x2x′

1
Cψψ

Cvu = Cvu(x, x
′) = Cov[v(x), u(x′)]

= Cov
[
∂x2

ϕ(x) + ∂x1
ψ(x), ∂x′

1
ϕ(x′)− ∂x′

2
ψ(x′)

]
= ∂2x2x′

1
Cϕϕ + ∂2x1x′

1
Cψϕ − ∂2x2x′

2
Cϕψ − ∂2x1x′

2
Cψψ
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Cvv = Cvv(x, x
′) = Cov[v(x), v(x′)]

= Cov
[
∂x1ϕ(x)− ∂x2ψ(x), ∂x′

1
ϕ(x′)− ∂x′

2
ψ(x′)

]
= ∂2x2x′

2
Cϕϕ + ∂2x1x′

2
Cψϕ + ∂2x2x′

1
Cϕψ + ∂2x1x′

1
Cψψ.

which sums up to the desired covariance function by noticing that Cϕψ = Cψϕ = 0 as we set ϕ, ψ
to be independent.

Another interesting derivation is on the spectral densities of the kernels, which can be obtained
easily using the properties derived at the end of Section 1.6 on how the frequency-domain function
is changed by differentiations in the time-domain function.

Proposition 2.2. Using the same setup as Proposition 2.1, we further assume that the kernels
kΦ, kΨ are stationary, so SΦ, SΨ are their frequency-domain counterparts following Theorem 1.7.
Assuming SΦ, SΨ are twice continuously differentiable, we have

SHelm(ω, ω′) =

[
−ω1ω

′
1SΦ(ω, ω

′) + ω2ω
′
2SΨ(ω, ω

′) −ω1ω
′
2SΦ(ω, ω

′)− ω2ω
′
1SΨ(ω, ω

′)
−ω2ω

′
1SΦ(ω, ω

′)− ω1ω
′
2SΨ(ω, ω

′) −ω2ω
′
2SΦ(ω, ω

′) + ω1ω
′
1SΨ(ω, ω

′)

]
.

Notice that the setup in Proposition 2.1 and Proposition 2.2 assumes independence between Φ and
Ψ, which can be changed. If correlations between the two functions are included, the Helmholtz
kernel will just have a few more terms in its entries, and one could obtain those terms easily by
following the computations in the proofs. Also, detailed expressions of the terms are listed as
Equations (4-9) of Ponte et al. (2024) using a slightly different definition of the curl operator.

2.4 Modelling Ocean Currents

In this section, we will consider a toy example of the ocean currents model using the gulf (of Mex-
ico) drifters open dataset of Lilly and Pérez-Brunius (2021), and apply the two GP decompositions
of Section 2.2 and Section 2.3 to compare their performance.

The Gulf Drifters data set provides the ground truth of ocean currents at 34 × 16 grid points,
equally spaced over the longitude-latitude region of [−90.8,−83.8] × [24.0 × 27.5]. The ground
truth of ocean currents is computed by the average velocity of the velocities within the grid.

In addition to the ground truth, the data set also provides training data, which are the velocity
observations obtained by various drifters placed in that region. One should note that the temporal
factor of the model and the data is ignored in this toy example, and should be considered in
practice.

Figure 7: Ground Truth of the Current and Drifter Trajectory of the Gulf Drifters Dataset of
Lilly and Pérez-Brunius (2021).

Next, we use both the velocity and Helmholtz decomposition as the GP model to fit the drifter
data. The kernel of choice for all these two decompositions is always the squared exponential
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kernel, and the hyperparameters are fitted using the data as well. This is just to simplify the
codes, and get a rough comparison. A more complicated, and more realistic kernel such as the
Matérn kernel can be used too. The velocity decomposition fit is listed in Figure 8, and the
Helmholtz decomposition fit is listed in Figure 9.

Figure 8: Vector Field Estimation using the Velocity Decomposition with SE kernels.

Figure 9: Vector Field Estimation using the Helmholtz Decomposition with SE kernels.

The right-most plots of both figures are the residuals between the fitted vector field and the
ground truth. One can notice from the residual plots that the Helmholtz decomposition provides
a much better fit, especially at regions where there is little data - such as the bottom two grids of
the [−88,−87] longitude strip. This is due to the fact that the Helmholtz decomposition better
captures the physics of the system by imposing GP priors on Φ,Ψ, which allows more accurate
extrapolations of the full vector field.
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Chapter 3

Building Kernel Spectra using
Mixtures

Due to the Bochner Theorem of Theorem 1.6, the covariance function k of a stationary Gaussian
process admits a Fourier transform, known as the spectral density S, which is a positive finite
measure on the frequency domain. The equivalence of k and S can also be established using the
Wiener-Khintchine Theorem of Theorem 1.7, allowing us to easily build the kernel in one space
and move to another. In this chapter, we will investigate existing methods of building kernels in
the frequency domain, i.e. the spectral density, using a mixture of simple distributions. Both the
scalar-output GPs and vector-output GPs will be considered, as they impose some challenges to
this spectral mixture approach.

Here, we will use the term ‘spectral mixture’ kernels to refer to all kernels built using a mixture
distribution at the spectrum. The respective names of each spectral mixture will be denoted
descriptively.

3.1 Spectral Mixture

In this section, we will look at the various ways one could build a stationary kernel with scalar
output using a mixture distribution for the spectrum. The two mixture ingredients are Gaussians
and blocks.

Recall that the Bochner Theorem of Theorem 1.6 states that, a complex-valued function k on Rd
that is positive (semi-)definite if and only if it admits the Fourier transformation

k(τ) =

∫
Rd

exp[2πisT τ ]µ(ds)

where µ is a non-negative finite probability measure. This result draws the equivalence
of the class of positive (semi-)definite functions and the class of their corresponding spectral
representations.

Note that the class of covariance functions of weakly stationary, mean square continuous, complex-
valued stochastic processes on Rd is equivalent to the class of positive (semi-)definite functions
on Rd, we can therefore draw the further equivalence of the kernel of such a stochastic process
admits a spectral representation µ. If the non-negative finite probability measure µ further admits
a density S, then we can have the Wiener-Khintchine Theorem of Theorem 1.7, which states that
the covariance function k has the Fourier dual S

k(τ) =

∫
Rd

S(s) exp[2πisT τ ]ds, S(s) =

∫
Rd

k(τ) exp[−2πisT τ ]dτ.

22



Here, S is denoted as the (power) spectral density of the covariance function k, and the goal
of this chapter is to figure out how to set the spectral density S as a mixture distribution, and its
consequences to the modelling power of the Gaussian process with that kernel.

One key property of the spectral density of a real-valued, stationary stochastic process is that it
is symmetric, i.e. S(s) = S(−s) for all s. To see this, we first recall that a kernel is symmetric,
i.e. k(x, x′) = k(x′, x). So, for stationary kernel k(x, x′) = k(τ) with τ = x − x′, we have
k(x, x′) = k(τ) = k(−τ) = k(x′, x). Next, using this result, we have, for stationary kernels
supported on R (for simplicity only, can be easily generalised to higher dimensions)

S(−s) =
∫ ∞

−∞
k(τ) exp[−2πi(−s)T τ ]dτ

=

∫ −∞

∞
k(−τ) exp[−2πi(−s)T (−τ)]d(−τ)

= −
∫ −∞

∞
k(τ) exp[−2πisT τ ]dτ

=

∫ ∞

−∞
k(τ) exp[−2πisT τ ]dτ = S(s)

as desired.

3.1.1 Gaussian Mixtures

Here, we are going to introduce the Gaussian spectral mixture kernel of Wilson and Adams (2013).

Consider a one-dimensional Gaussian random variable N(µ, σ2), its density is given by

g(x;µ, σ2) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]
where the mean and the variance of the random variable are included explicitly above. We can
then consider the following symmetric mixture

S(s) =
1

2
g(s;µ, σ2) +

1

2
g(−s;µ, σ2)

which is symmetric by construction.

Given the context, it is not hard to imagine that the next step is to find the stationary kernel
corresponding to S. First, S is clearly non-negative and finite by construction, so the stationary
kernel that we are looking for does exist. Then, we will do the Fourier transform. Since Fourier
transformation is a linear operator, we can consider it term by term. We have

f1(τ) =

∫ ∞

−∞
g(s;µ, σ2) exp[−2πisτ ]ds

=

∫
1√
2πσ

exp

[
− 1

2σ2
(s− µ)2

]
exp[−2πisτ ]ds

=
1√
2πσ

∫
exp

[
− 1

2σ2
(s− µ)2 − 2πisτ

]
ds

=
1√
2πσ

∫
exp

[
− 1

2σ2
s2 +

µ

σ2
s− 2πiτs− µ2

2σ2

]
ds.

We will try to complete the square for the insides of the exponential above with respect to s to
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allow nice integration tricks. We could have

− 1

2σ2
s2 +

µ

σ2
s− 2πiτs− µ2

2σ2

= − 1

2σ2

[
s2 −

(
2µ− 4πiτσ2

)
s
]
− µ2

2σ2

= − 1

2σ2

[
(s− (µ− 2πiτσ2))2 − µ2 + 4πiτσ2µ− 4π2i2τ2σ4

]
− µ2

2σ2

= − 1

2σ2

[
(s− (µ− 2πiτσ2))2

]
+

µ2

2σ2
− 2πiτµ− 2π2τ2σ2 − µ2

2σ2

= − 1

2σ2

[
(s− (µ− 2πiτσ2))2

]
− 2πiτµ− 2π2τ2σ2.

Therefore, plugging the above reformulation back into the integral, we have

f1(τ) =
1√
2πσ

∫
exp

[
− 1

2σ2
s2 +

µ

σ2
s− 2πiτs− µ2

2σ2

]
ds

=
1√
2πσ

∫
exp

[
− 1

2σ2

[
(s− (µ− 2πiτσ2))2

]
− 2πiτµ− 2π2τ2σ2

]
ds

= exp
[
−2πiτµ− 2π2τ2σ2

] 1√
2πσ

∫
exp

[
− 1

2σ2
(s− (µ− 2πiτσ2))2

]
ds

= exp
[
−2πiτµ− 2π2τ2σ2

]
where the last step is by realising the integrated corresponds to the (unnormalised) density function
of a Gaussian random variable. The Fourier transform of g(−s;µ, σ2) can be derived similarly
and easily by realising g(−s;µ, σ2) = g(s;−µ, σ2). We will omit the derivations and just state the
result below:

f2(τ) = exp
[
2πiτµ− 2π2τ2σ2

]
Thus, we have the full Fourier transform of the symmetric Gaussian mixture S(s):

k(τ) =

∫ ∞

−∞
S(s) exp[−2πisτ ]ds

=

∫ ∞

−∞

[
1

2
g(s;µ, σ2) +

1

2
g(−s;µ, σ2)

]
exp[−2πisτ ]ds

=
1

2
f1(τ) +

1

2
f2(τ)

= exp[−2π2τ2σ2]

[
1

2
exp[−2πiτµ] +

1

2
exp[2πiτµ]

]
= exp[−2π2τ2σ2] cos(2πτµ).

where the last step uses the trigonometric identity.

To summarise the above derivations, we have the following proposition.

Proposition 3.1. Consider a one-dimensional Gaussian random variable with mean µ and vari-
ance σ2, where we denote its density as g(·;µ, σ2). The symmetric mixture S of g, defined by

S(s) =
1

2
g(s;µ, σ2) +

1

2
g(−s;µ, σ2)

is the spectrum of a stationary kernel k, defined by

k(τ) = exp[−2π2τ2σ2] cos(2πτµ).

Due to the linearity of the Fourier transform, we can extend the above proposition to the case
where more than one Gaussian is used to build the mixture.
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Proposition 3.2. Consider a sequence of one-dimensional Gaussian random variables with mean
µq and variance σ2

q for q = 1, 2, . . . , Q, where we denote each density as gq(·;µq, σ2
q ). The sym-

metric mixture S of {gq}Qq=1 with normalised weights {Aq}Qq=1, defined by

S(s) =
1

2

Q∑
q=1

Aq
[
gq(s;µq, σ

2
q ) + gq(−s;µq, σ2

q )
]

is the spectrum of a stationary kernel k, defined by

k(τ) =

Q∑
q=1

Aq exp[−2π2τ2σ2
q ] cos(2πτµq).

We can also easily extend the above result to the case of general dimensional input space.

Proposition 3.3. Consider a sequence of n-dimensional Gaussian random vector with mean
vector µq and diagonal covariance matrix Σq where the d-th coordinate of that random vector has

mean µ
(d)
q and variance (σ

(d)
q )2 for q = 1, 2, . . . , Q, where we denote each density as gq(·;µq,Σq).

The symmetric mixture S of {gq}Qq=1 with normalised weights {Aq}Qq=1, defined by

S(s) =
1

2

Q∑
q=1

Aq [gq(s;µq,Σq) + gq(−s;µq,Σq)]

is the spectrum of a stationary kernel k, defined by

k(τ) =

Q∑
q=1

Aq

n∏
d=1

exp[−2π2τ2d (σ
(d)
q )2] cos(2πτdµ

(d)
q )

where τd denotes the distance in the d coordinate between the two compared points of the kernel.

A very desirable property of Gaussian mixtures is that mixtures of Gaussian distribution are dense
in the set of probability distributions (w.r.t. the weak topology). This means, intuitively, that we
can approximate any probability distributions to any arbitrary precision using a Gaussian mixture
- although the number of Gaussians needed for such a mixture might be very large.

Proposition 3.4. Mixtures of Gaussians are weak-* dense in the space of probability distributions.

Sketch of Proof. First, we should convince ourselves that we can approximate any constant ran-
dom variable (i.e. a random variable that takes a constant value C with probability 1) using
Gaussian mixtures. Simply consider a sequence of Gaussians {Xn}n with mean C and variance
1/n, and we could obtain a sufficiently good approximate of the constant random variable for
large enough n.

Next, we should realise that any random variable can be approximated, in distribution, by a
mixture of constants. This means that for any random variable X of interest, its distribution
function can be approximated with arbitrary precision by a linear combination of step functions
(note that the distribution function of a constant random variable is the Heaviside step function).

Combining the two, we can therefore convince ourselves that the desired statement is correct.

One takeaway from the proof sketch above is that we are not limited to Gaussians as the building
blocks for our mixtures. As long as we can show that the new building block allows us to construct
a dense set in the space of probability measures, we would get the same theoretical justification
for establishing spectral mixtures with those blocks. An alternative choice of the building blocks
is the topic of the next subsection.

The main issue with such Gaussian spectral mixture kernels (and spectral mixture kernels in gen-

eral) is that the number of components Q and the parameters {(µq, σ2
q )}

Q
q=1 could be hard to infer.
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The parameters may not be identifiable, and a full inference for the number of components Q is
a model selection problem which could be very computationally costly to investigate properly. In
practice, people often pick a nice, easy value of Q arbitrarily, and estimate the parameters conse-
quently. A more theoretically justified analysis of the model selection and parameter estimations
of spectral mixture kernels is a direction of future work in this area.

3.1.2 Block Mixtures

The block mixture of Tobar (2019), in essence, replaces the Gaussian components of the Gaussian
spectral mixture with a rectangle function r(s) given by

r(s) =


1 |s| < 1/2

1/2 |s| = 1/2

0 elsewhere.

Note that first, this is (almost everywhere) a uniform distribution Unif(−0.5, 0.5), which is a
probability distribution. Next, we also realise that shifting the location and width of the rectangle
function r(s) is very straightforward: a rectangle function with mean ξ is r(s−ξ), while a rectangle
function with width ∆ is r(s/∆)/∆. Finally, the Fourier transform of r(s) is known from the signal
processing literature, and we will derive it below.

For simplicity, we will do the Fourier transform to the basic rectangle function r(ξ) with location
0 and width 1. Any shifting and scaling will impact the Fourier transform in a very simple way,
thus they are omitted here.

We have ∫ ∞

−∞
r(s) exp[−2πisτ ]ds =

∫ 1/2

−1/2

exp[−2πisτ ]ds

=
1

−2πiτ
[exp[−2πisτ ]]

1/2
−1/2

=
−2i sin(πτ)

−2πiτ
=: sinc(τ)

where sinc(x) := sin(πx)/(πx) is the normalised sinc function, and consequently∫ ∞

−∞

1

∆
r

(
s− ξ

∆

)
exp[−2πisτ ]ds = e−2πiτξ sinc(∆τ).

Therefore if we construct a symmetric mixture

S(s) =
1

2∆
r

(
s− ξ

∆

)
+

1

2∆
r

(
s+ ξ

∆

)
,

we would have

k(τ) =

∫ ∞

−∞
S(s) exp[−2πisτ ]ds =

sinc(∆τ)

2

[
e−2πiτξ + e2πiτξ

]
= sinc(∆τ) cos(2πτξ).

The above kernel is called the sinc kernel in Tobar (2019). A direct property by construction
of the sinc kernel is the support of its spectrum is bounded (and compact), meaning that, in
signal processing terms, the kernel is band-limited, and only has a bounded range of frequencies,
rather than the full range of frequencies in the case of Gaussian mixture kernels as well as most
commonly used kernels like the SE kernels and Matérn kernels. This property could be beneficial
on its own, as it could be a nice modelling assumption that fits certain applications. But even more
importantly, this allows us to borrow a lot of existing results in the signal processing literature
regarding Shannon sampling and interpolation theory (Marks, 1990) such as the Nyquist-Shannon
sampling theorem and the Nyquist frequency.
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The Nyquist-Shannon sampling theorem states that, for a band-limited (i.e. bounded spectrum
support) signal with the bandlimit (i.e. largest frequency) being fB , we can reconstruct the
signal perfectly using the observations of the signals obtained at the Nyquist frequency fB/2
by doing the Shannon interpolation given by

x(t) =

∞∑
n=−∞

xn sinc

(
t− nfB
fB

)
where x(t) is the reconstructed signal, {xn} is the observations at the Nyquist frequency, and fB
is the bandlimit (Marks, 1990). One caveat of this seemingly nice result is that the reconstruction
requires infinite observations (at a certain frequency) which is not realistic.

In the case of GP, the introduction of sampling and interpolation theory could guide our intuition
for picking inducing points (i.e. representative subsamples of the observations). Such discussions
can be found in Section 3 of Tobar (2019), and we will omit those here.

A linear combination of rectangle functions for spectral mixture can then be transformed into a
covariance function using a very similar argument as in the case of Gaussian mixtures. This will
bypass the issue of the sinc kernel taking constant value over a range of frequencies. The author
of Tobar (2019) also proposed a generalised sinc kernel by leveraging the convolution property
of the Fourier transform to build more expressive kernels in general, but a further discretisation
is needed as there does not always exist a closed form, easy to compute convolution. This kernel
is thus omitted as the class of generalised sinc kernels after discretisation is a subset of the class
of block mixture kernels.

Proposition 3.5. Consider a sequence of one-dimensional rectangle functions with location ξq
and width ∆q for q = 1, 2, . . . , Q, where we denote each density as rq(s) := r((s − ξq)/∆q). The

symmetric mixture S of {rq}Qq=1 with normalised weights {Aq}Qq=1, defined by

S(s) =
1

2

Q∑
q=1

Aq [rq(s) + rq(−s)]

is the spectrum of a stationary kernel k, defined by

k(τ) =

Q∑
q=1

Aq sinc(∆qτ) cos(2πτξq).

Additionally, we can convince ourselves easily, just like in the case of using Gaussian mixtures,
that the rectangle functions are dense in the space of probability measures. To see this, we can
use the same argument as in the proof sketch of Proposition 3.4. We can realise that if we have a
sequence of rectangle functions {rn} with mean C and width 1/n, then as n → ∞, the sequence
of rectangle function will converge to the constant random variable at C. The rest of the proof
then follows exactly.

3.2 Vector-Output Spectral Mixture

In the previous section, we have looked at spectral mixture for scalar-output GPs. In this section,
we will look at the extensions of the above models to vector-output GPs. Many of the ideas used
will be based heavily on the concepts in Chapter 2.

3.2.1 Spectra of Vector-Output Kernels

Recall that the key result we rely on for building spectral kernels for scalar output GP is the
Bochner theorem of Theorem 1.6. To study the spectrum of vector output GP, it will be nice to
have an extension of the Bochner theorem to guide our constructions. Luckily, such a theorem
exists, which we will state below.
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Theorem 3.6 (Cramér Theorem, Cramér (1940)). A family {ki,j(τ)}mi,j=1 of integrable functions
are the covariance functions of a weakly stationary, multivariate stochastic process if and only if
we have

• the spectral representation

kij(τ) =

∫
Rd

exp[
√
−1ωT τ ]Sij(ω)dω, ∀i, j ∈ {1, 2, . . . ,m}

where each Sij : Rd → C is integrable, which we denote as the spectral density associated to
the covariance function kij(τ).

• the spectral densities are positive definite, in the sense that

m∑
i,j=1

zizjSij(ω) ≥ 0 for any zi, zj ∈ C, ω ∈ Rd

where z is the complex conjugate of z.

To summarise, the Cramér theorem states that for vector-output spectrum, not only does each
term of the spectrum matrix need to be the exact Fourier dual, but the spectrum matrix itself
should also be positive definite. So we should consider one more thing when designing spectral
kernels for vector-output GPs.

3.2.2 Gaussian Mixtures

Given the Cramér theorem, we are now ready to define the Gaussian mixtures for vector-output
GPs. The goal is to make sure that each coordinate of the output, marginally, is a scalar-valued
Gaussian mixture kernel. Consequently, this leads to certain (relatively) limited choices of the
dependency between coordinates.

First, we recall the Cholesky decomposition states that, for a positive definite matrix S, we can
find the decomposition

S = RHR

where RH is the Hermitian of R. This means, in order to build the desired spectrum S, we just
need to find some matrix R and compute RHR to make it positive definite, as required for the
Cramémer theorem.

Then, we will model each Ri where i = 1, 2, . . . ,m with m being the number of dimensions of the
vector output of our GP. We will set each Ri as a SE kernel here, as

Ri(ω) = ωi exp

[
−1

4
(ω − µij)

TΣ−1
i (ω − µij)

]
which implies that after RHR, we have the spectral densities

Sij(ω) = ωij exp

[
−1

2
(ω − µij)

TΣ−1
ij (ω − µij)

]
.

Note that we have used the following parameters above:

• (covariance) Σij = 2Σi(Σi +Σj)
−1Σj

• (mean) µij = (Σi +Σj)
−1(Σiµj +Σjµi)

• (magnitude) ωij = ωiωj exp
[
− 1

4 (µi − µj)
T (Σi +Σj)

−1(µi − µj)
]
.

We can also model a delay (between the spectrum of the various coordinates) and a phase pa-
rameter into our model, as outlined in Parra and Tobar (2017) and Ulrich et al. (2015). These
are simple tweaks that do not affect the main idea behind the kernel design and, thus are omitted
here for simplicity of presentation.

One should easily realise that the Sij constructed above is (proportionate to) the multivariate
Gaussian density, as desired. Next, we can use a similar calculation as the scalar-output case, and
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derive both the symmetric Gaussian mixture for the spectral-domain kernel and its time-domain
representation, which we state below:

Sij(ω) =
ωij
2

exp

[
−1

2
(ω − µij)

TΣ−1
ij (ω − µij)

]
+
ωij
2

exp

[
−1

2
(ω + µij)

TΣ−1
ij (ω + µij)

]
kij(τ) = αij exp

[
−1

2
τTΣijτ

]
cos
(
τTµij

)
where αij := ωij(2π)

n/2|Σij |1/2.

Naturally, we can do a linear combination of q copies of the above spectral mixtures with different
parameters as before, which gives us the full version of the vector-output Gaussian spectral mixture
kernel proposed in Parra and Tobar (2017). This is also a more general kernel than the spectral
mixture kernel proposed in Ulrich et al. (2015) using the linear model of coregionalisation idea to
extend the scalar-output spectral mixture to the vector-output case.

To simplify the notations, we consider the special case of a mixture of two Gaussians with equal
weights for a two-vector output Gaussian spectral mixture kernel. Let u, v denote the two coordi-
nates of the output, the spectrum of the first coordinate is

Suu =
1

2

[
1

2
(G+

u1
+G−

u1
) +

1

2
(G+

u2
+G−

u2
)

]
where Gui

with i = 1, 2 are the Gaussian components for u and the ± superscripts denote the
symmetric pairs of the Gaussians. The spectrum of the second coordinate, similarly, is

Svv =
1

2

[
1

2
(G+

v1 +G−
v1) +

1

2
(G+

v2 +G−
v2)

]
.

The cross-spectrum (i.e. the spectrum of the cross variance), consequently, is given by

Suv = Svu =

√
G+
u1G

+
v1 +

√
G−
u1G

−
v1 +

√
G+
u2G

+
v2 +

√
G−
u2G

−
v2 .

Given this cross-spectrum, the correlation of the vector-output Gaussian spectral kernel ρ(ω)
becomes

ρ(ω) =
Suv(ω)√

Suu(ω)Svv(ω)

=

√
G+
u1G

+
v1 +

√
G−
u1G

−
v1 +

√
G+
u2G

+
v2 +

√
G−
u2G

−
v2√

1
2

[
1
2 (G

+
u1 +G−

u1) +
1
2 (G

+
u2 +G−

u2)
]
+ 1

2

[
1
2 (G

+
v1 +G−

v1) +
1
2 (G

+
v2 +G−

v2)
]

=

√
G+
u1G

+
v1 +

√
G−
u1G

−
v1 +

√
G+
u2G

+
v2 +

√
G−
u2G

−
v2

1
2

√[
(G+

u1 +G−
u1) + (G+

u2 +G−
u2)
]
+
[
(G+

v1 +G−
v1) + (G+

v2 +G−
v2)
] .

Notice that the value of the correlation ρ(ω) could only take 1 if we could establish the Cauchy-
Schwartz inequality’s equality condition. If we wish to model a perfectly correlated two-vector
output GP using Gaussian spectral kernel, we could only pick our Gaussian components such that
Suu and Svv are of the same shape completely (for Cauchy-Schwartz to take equality), which is
extremely limiting. Therefore, this serves as a counterexample of the statement: ‘vector-output
Gaussian spectral mixture kernels are dense in the space of stationary vector-output kernels’.

3.2.3 Block Mixtures

To remedy the above problem of lack of denseness of vector-output Gaussian spectral mixture
kernels, Simpson et al. (2021) proposed an alternative model with the same construction (via
Cramér theorem) but different building block (using rectangle functions).
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In Simpson et al. (2021), the authors argued that the lack of expressiveness of Gaussian components
in the cross-spectrum, revealing itself in the form of a limited correlation range, is due to the fact
that the Gaussian components overlap in tails as the overlapping in tails will induce unintended
dependencies. To resolve this issue, a fixed bandwidth building block, the rectangle function
introduced in Section 3.1.2, is used as it does not have the overlapping tail problem. The proposed
model is summarised below.

Proposition 3.7 (Minecraft Kernel). Using rectangle function Bµq,ωq with location µq and width
ωq for q = 1, 2, . . . , Q and weights Aqij for the i, j-th component of the vector-output kernel with
D-dimensional input, we have the Minecraft kernel defined as

Sij(ν) =

Q∑
q=1

1

2
Aqij [Bµq,ωq (ν) +B−µq,ωq (ν)]

Kij(r) =

Q∑
q=1

Aqij cos(r
Tµq)

D∏
d=1

sinc(rdω
q
d)

where the Q amplitude matrices Aq constructed using the weights Aqij are all positive definite.

It was shown in Simpson et al. (2021) as Theorem 3 that the above Minecraft kernel is L1-dense
in the space of vector-output stationary, real-valued kernels.
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Appendix A

Mathematical Background

A.1 Linear Algebra

A helpful operation between matrices is the Kronecker product ⊗ which takes two matrices
and outputs a block matrix. This is a special case of tensor product, and it is not the same as
matrix multiplication.

Definition A.1 (Kronecker product). Consider a matrix A ∈ Rm×n and a matrix B ∈ Rp×q, the
Kronecker product A⊗B ∈ Rpm×qn is a block matrix defined as

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


which can be written more explicitly as

A⊗B =



a11b11 · · · a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q
a11b21 · · · a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q

...
...

. . .
...

...
...

. . .
...

a11bp1 · · · a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
am1b11 · · · am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q
am1b21 · · · am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q

...
...

. . .
...

...
...

. . .
...

am1bp1 · · · am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq



.

Some of the properties of the Kronecker product are listed below.

Proposition A.2. Consider matrices A,B,C, a zero matrix 0, and a scalar k ∈ R. We have

• A⊗ (B + C) = A⊗B +A⊗ C
• (B + C)⊗A = B ⊗A+ C ⊗A
• (kA)⊗B = A⊗ (kB) = k(A⊗B)
• (A⊗B)⊗ C = A⊗ (B ⊗ C)
• A⊗ 0 = 0⊗A = 0
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A.2 Vector Calculus

Consider the scalar function f : R2 → R that is differentiable, and the vector field F : R2 → R2

that is differentiable in both of its coordinates.

The gradient of f is defined by

grad f(x) = ∇f(x) =
[
∂x1

f(x)
∂x2

f(x)

]
where x = (x1, x2) and ∂xi

f is the partial derivative of f with respect to xi where i = 1, 2 here.
Notice that the scalar function f becomes a vector field after ∇. In particular, we can isolate the
∇ operator and it is defined as

∇ =

[
∂x1

∂x2

]
.

The divergence of F is defined by

divF (x) = ∇ · F (x) = (∇ · F ) (x) =
[
∂x1

F1(x)
∂x2F2(x)

]
where Fi(x) represents the i-th coordinate of F (x) where i = 1, 2 here.

The curl of F is defined by

curlF (x) = ∇× F (x) =

[
∂x1

∂x2

]
×
[
F1(x)
F2(x)

]
= ∂x1

F2(x)− ∂x2
F1(x)

where × represents the cross product of vectors. The curl, which makes much more intuitive sense
in R3, captures the infinitesimal circulation of the motion.

The rotation of f is defined by

rot f(x) = k ×∇f =

[
−∂x2f
∂x1

f

]
where k represents the unit vector in the third dimension that is orthogonal to the two unit vectors
in the first and second dimensions that we use (by default) to set up the vector. Note that different
groups of people use different versions of this operator. In the oceanography literature, the above
definition is the commonly used version, which is what we will use here. In the physics literature,
however, the minus sign is on the second coordinate rather than the first.

One should note that a vector field F is called curl-free if curlF = 0, and it is called incom-
pressible, or divergence-free, if divF = 0. Two easy-to-show but relevant identities about curl,
div, grad, and rot are below: for continuous scalar field f , we have

curl(grad f) = 0, div(rot f) = 0.

This motivates the Helmholtz decomposition of a vector field in 2D.

Definition A.3 (Helmholtz Decomposition in 2D). Consider a twice continuously differentiable
and compactly supported vector field F : R2 → R2. The Helmholtz decomposition indicates that
there exists a scalar potential Φ : R2 → R, called the potential function, and a scalar potential
Ψ : R2 → R, called the stream function, such that we have

F = grad Φ + rot Ψ

where functions Φ,Ψ are not unique.

Notice that since curl(grad f) = 0 and div(rot f) = 0, the above decomposition essentially decom-
poses the vector field into a curl-free part grad Φ and a divergence-free part rot Ψ.
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A.3 Fourier Analysis

A.3.1 Properties of Fourier Transform

Proposition A.4. If we denote the Fourier transform operator as F and f, h be functions that
admit Fourier transforms. We have

• F [f(x− x0)] = exp[−2πix0τ ] · F [f ](τ), x0 ∈ R.
• F [f(ax)] = |a|−1F [f ](τ/a), a ̸= 0.
• F [af(x) + bh(x)] = aF [f ](x) + bF [f ](x), a, b ∈ C.
• F [f ∗ h] = F [f ] · F [g] where ∗ is the convolution operator.
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