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Preface

Notes based on the STOR-i Masterclass “Stein’s Methods as a Computational Tool” in April
2024, delivered by FX Briol.

We cover a simple introduction to Stein’s method and the kernel Stein discrepancy which is a
commonly used tool in Computational Statistics and Machine Learning, with applications such
as the Stein Variational Gradient Descent (SVGD) (Liu et al., 2016) and the Stein thinning for
MCMC convergence diagnostics (Riabiz et al., 2022). This notes showcases the basics of Stein’s
method and the kernel Stein discrepancy.

The word ‘Stein’ has been used (merely!) 91 times in this notes.
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Chapter 1

Introduction to Stein’s Method

Measuring the distance between two probability distributions is one of the main tasks in compu-
tational statistics and machine learning. There are many types of distances/discrepancies being
frequently used, such as the KL divergence, the total variation distance, the Wasserstein distance,
etc. These notions are used both as a theoretical tool to study convergence rates of algorithms
and as a conceptual guide to design algorithms. For example, the KL divergence is frequently
used in variational inference (Blei et al., 2017) as a loss function to enable optimisations. At this
same time, it is also used in the context of being the objective function in Wasserstein gradient
flow to draw links with the Langevin diffusion (Jordan et al., 1998).

In this notes, we will focus on one class of discrepancy measures based on Stein’s method. The
field of Stein’s method began as a new way to prove the central limit theorem due to Stein (1972),
and it has stayed as a topic for Probabilists for a long time (Chen et al., 2010). Only recently has
the rich class of tools of Stein’s methods found their way into the computational statistics and
machine learning literature, with early work such as Oates et al. (2017) and Liu et al. (2016).

There are some key properties of Stein’s methods that make it accessible and desirable. First,
(major classes of) discrepancy measures based on Stein’s method require only the unnormalised
version of probability density functions. Second, these discrepancy measures can be computed
for a wide range of practical and complex probabilistic models within reasonable computational
time. Third, there exists a lot of existing research on the theoretical aspects of such discrepancies
from a mathematical point of view, which could be helpful.

1.1 Stein Characterisation

Consider a probability distribution P and we would like to find a characterisation for it. A
characterisation of a distribution here means a description that is in one-to-one correspondence to
the distribution. Examples of common characterisations include the probability density function,
the cumulative density function, and the moment generating functions. In the case of Stein’s
method, we have the following characterisation.

Definition 1.1. A Stein characterisation for a probability distribution P is a pair (SP ,GP )
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such that for any probability distribution Q, we have

Q = P ⇐⇒ EX∼Q [SP [g](X)] = 0 ∀g ∈ GP

⇐⇒ EX∼Q [h(X)] = 0 ∀h = SP [g] with g ∈ GP .

Here, SP is called the Stein operator of P , GP is called a Stein class of P , and EX∼Q [SP [g](X)] =
0 ∀g ∈ GP is called the Stein identity of P .

One should realise that the Stein operator and the Stein class for a distribution do not have to
be unique. For example, a non-zero scalar multiple of a Stein operator would still be a Stein
operator. Also, if some g satisfies the Stein identity, any non-zero multiple of it would also satisfy
it. It, therefore, implies that the Stein class is not unique.

1.2 Langevin Stein Operator

One example of the Stein operator for a given distribution P with density p is the Langevin Stein
operator.

Definition 1.2. A Langevin Stein operator for a distribution P with density p is defined as

JP [g](x) := ⟨∇x log p(x), g(x)⟩+ ⟨∇, g(x)⟩

for sufficiently regular g. Here, the term ∇x log p(x) is often called the (Stein) score function.

Note that the operator uses the density only via ∇ log p, which will give the same value if we
multiply the density by a nonzero constant C when we can only access the unnormalised density.

Before providing some intuitions on the construction of the Langevin Stein operator, we first try
a toy example. Consider the case where the distribution P is N(0, σ2). Using the Langevin Stein
operator, we have

JP [g](x) = ⟨∇x log p(x), g(x)⟩+ ⟨∇, g(x)⟩

=

(
−∇x

x2

2σ2

)
g(x) + g′(x)

= −xg(x)/σ2 + g′(x).

First, we will show that this is indeed a Stein operator.

Proposition 1.3. The operator JP defined by JP [g](x) = −xg(x)/σ2+g′(x) is a Stein operator
for N(0, σ2) where its Stein class is the set of all differentiable functions.

Proof. First, we show that
EX∼N(0,σ2)[JP [g](X)] = 0.

Substituting the value of this operator and rearranging the terms, we have

EX [Xg(X)] = σ2E[g
′(X)].
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The right-hand side of the above equation, using integration by parts, gives us

σ2E[g
′(X)] =

σ2

√
2πσ

∫ ∞

−∞
g′(x) exp

(
− x2

2σ2

)
dx

=
σ√
2π

[
g′(x) exp

(
− x2

2σ2

)]∞
−∞

− σ√
2π

∫ ∞

−∞
g(x) exp

(
− x2

2σ2

)(
− x

σ2

)
dx

=
1√
2πσ

∫ ∞

−∞
g(x) exp

(
− x2

2σ2

)
xdx

= EX [Xg(X)]

as desired.

Next, for the reverse direction, we first realise that if

xg(x)− σ2g′(x) = 1X≤z(x)− σΦ(z)

where Φ is the CDF of N(0, 1) and z is a fixed constant, then

0 = EX∼Q[Xg(X)− σ2g′(X)] = EX∼Q[1X≤z(x)− σΦ(z)] = P(Q ≤ z)− σΦ(z)

implies that Q is N(0, σ2), as required. It can be shown that the solution g to the equality

xg(x)− σ2g′(x) = 1X≤z(x)− σΦ(z)

has to be

gz(w) =

{√
2πew

2/2Φ(w)[1− Φ(z)] if w ≤ z√
2πew

2/2Φ(z)[1− Φ(w)] if w ≥ z

which is certainly differentiable and will be in the Stein class. Therefore, since the reverse
direction of the Stein identity holds for any g in Stein class, it will hold for gz, which gives us
the desired condition that Q is N(0, σ2).

Regarding the intuition behind this operator, it is due to the infinitesimal generator of the Markov
semigroup induced by the Langevin diffusion, which is also why this approach of constructing
Stein operators is often called the generator approach.

Consider a time-homogeneous Ito diffusion process {Xt}t characterised by the following stochastic
differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt

where µ is the drift term, σ is the volatility term, and {Wt}t is a Brownian motion. The Ito
diffusion process {Xt}t is time-homogeneous as both µ and σ have no direct dependency on t. A
nice property of this process is that it is a Markov process, and we can define a Markov transition
operator Pt associated with {Xt} by

Ptf(x) := E[f(Xt)|X0 = x]

for a sufficiently nice class of test functions f . Consequently, the set of operators {Pt}t≥0 forms
a Markov semigroup, which then allows one to define its infinitesimal generator L by

Lf := lim
t→0+

Ptf − f

t
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where f belongs to the same class of functions as the f before. More details on Markov processes,
Markov operators, and Markov semigroup can be found in Bakry et al. (2014).

Intuitively, the generator L can be viewed as the gradient of the Markov operator at time 0,
which serves as a fundamental tool in other equations involving the Markov process such as the
Fokker-Planck equation. The Fokker-Planck equation associated with the SDE characterisation
of the Ito diffusion {Xt} is given by

∂

∂t
pt = L∗pt

where pt is the density of the Markov operator Pt (and it is also the transition density of the
Markov process), and L∗ is the adjoint of L defined by∫

Lf(x)g(x)dx =

∫
f(x)L∗g(x)dx

for any sufficiently nice f, g. While the SDE characterisation represents the motions of the
positions and states of the Markov process, the Fokker-Planck characterisation represents the
motions of the density of the states of the Markov process. It can be shown that these two
characterisations are equivalent, see standard references such as Oksendal (2013).

In the special case of the Ito diffusion being the Langevin diffusion, characterised by the SDE

dXt =
1

2
∇ log π(Xt)dt+ dWt (1)

where {Wt} is a Brownian motion and π is a probability distribution. A key property of the
Langevin diffusion is that the equilibrium distribution of Xt is, in fact, the distribution π, due
to the steady state derived from the Fokker-Planck equation. For the Langevin diffusion, its
generator is provided by

Lf =
1

2
∇ log π(x)

∂f

∂x
+

1

2

∂2f

∂x∂x
=

1

2
⟨∇ log π,∇f⟩+ 1

2
⟨∇,∇f⟩

for some sufficiently nice f . At this stage, it is obvious that if we replace ∇f/2 by g, we would
recover the Langevin Stein operator of Definition 1.2. This is why there is ‘Langevin’ in the
name, and this approach of generating Stein operators is called the ‘generator approach’.

The fact that this generator approach is a sensible one is established in Barbour (1988). Consider
the equation

EX∼Q[Lg(X)]

where g is some function of the Stein class and L is the generator of a Markov chain with
equilibrium P . When Q is the same as P , we have, where X ∼ Q = P ,

Lg(X) = E[ lim
t→0+

[Ptg(X)− g(X)]/t] = E[ lim
t→0+

[g(X)− g(X)]/t] = 0

as X follows the equilibrium distribution of the Markov chain with transition kernel Pt. The
reverse of the above statement, i.e. the expectation is zero implies Q = P , is slightly harder to
show, but it should make intuitive sense. Additionally, the generator approach allows us to even
construct Stein operators in cases where we are working on a manifold instead of the Euclidean
space (which is the default here).
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1.3 Stein Discrepancy

Using the Stein characterisation of a distribution P stated in Definition 1.1, we can construct a
way to measure the distance between two distributions P and Q. The term ‘distance’ here does
not mean ‘metric’ in the full mathematical sense as not all conditions of a metric are satisfied.

A general discrepancy for distributions is the integral probability metric (IPM), which is
defined by

dH(P,Q) := sup
h∈H

|EP [h(X)]− EQ[h(X)]| (2)

where P,Q are probability measures with the same support X and H is a class of measurable
test functions. A lot of commonly used discrepancies can be viewed as special cases of IPMs.
For example, if we choose

H =

{
h : Rd → R s.t. sup

x ̸=y∈Rd

|h(x)− h(y)|
∥x− y∥2

≤ 1

}

to be the set of functions with Lipschitz constant at most 1, then we would recover the L1−Wasserstein
distance. If we choose

H = {f : X → [0, 1]},

then we would get the total variation distance. One should note that the class of discrepancies
that can be phrased as an IPM does not include the KL divergence.

Using this framework, a choice of the class of functions would be

H = {h = SP [g] with g ∈ GP }

for Stein characterisation (SP ,GP ) of distribution P . We would then obtain the Stein discrep-
ancy S as

S(P,Q) := sup
g∈GP

|EP [SP [g](X)]− EQ[SP [g](X)]| = sup
g∈GP

|EQ[SP [g](X)]| . (3)

A justification of why this is a reasonable measurement is that, due to the Stein identity, the
above quantity S(P,Q) would be small if Q is sufficiently close to P , and large if otherwise. This
discrepancy, however, does not offer an intuitive interpretation like the total variation distance
or the Wasserstein distance.

After identifying this discrepancy, a reasonable question to ask is, how should we compute this
in practice? The quantity involves a supremum, which is taken over an infinite set, so a direct
enumeration approach of computation is doomed to fail. In the next chapter, we will consider a
computationally feasible and equivalent formulation to the Stein discrepancy which is the key to
making it implementable.
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Chapter 2

Kernel Stein Discrepancy

In the previous chapter, we have focused mostly on Stein operators, while putting little emphasis
on the Stein class. If we wish to compute the Stein discrepancy in practice, we have to consider
constructing a nice class of functions for the Stein class that is sufficiently large to be a Stein class,
yet not too large to make computation infeasible. This relies on the concept of a reproducing
kernel Hilbert space.

2.1 Reproducing Kernel Hilbert Space

2.1.1 Positive Definite Kernel

The building block of a reproducing kernel Hilbert space, the central topic of this section, is a
(positive definite) kernel.

Definition 2.1. A function k : X × X → R is a positive definite kernel if it satisfies:

1. (symmetric) k(x, y) = k(y, x) ∀x, y ∈ X .
2. (positive semi-definite) For all n ∈ N, c1, c2, . . . , cn ∈ R, and x1, x2, . . . , xn ∈ X , we have

n∑
i,j=1

cicjk(xi, xj) ≥ 0.

Following the definition, we can represent k in a matrix form like

k =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)


which needs to be symmetric (i.e. k = kT ) and positive semi-definite.

Some of the direct properties of a kernel is that for two positive definite kernels k1, k2 defined on
the same space X×X , we can show that k1+k2 and k1 ·k2 (where the addition and multiplication
are defined pointwise) are positive definite kernels too. Also, a scaling of a positive definite kernel
k using a function f : X → R defined by

kf (x, y) := f(x)k(x, y)f(y)
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for any x, y ∈ X will still give a positive definite kernel.

Examples of such kernels include the squared exponential kernel

k(x, y) = λ exp

(
−∥x− y∥22

l

)
where l > 0 is the length scale and λ > 0 is the amplitude of the kernel, and the polynomial
kernel

k(x, y) = λ(xT y + c)p

for amplitude λ > 0, degree p > 0, and intercept c ≥ 0. These kernels are very closely linked
to the covariance functions in Gaussian processes, and this indicates an intimate connection
between kernels and Gaussian processes. This connection will not be explored here, and one
could refer to Kanagawa et al. (2018) for a survey on it.

In general, we have the general form of radial kernel which is given by

k(x, y) = λϕ(−∥x− y∥22/l2)

for a bounded function ϕ : X → R, hyperparameters amplitude λ > 0 and length scale l > 0.
This type of formulation highlights the translational invariance of the kernel.

2.1.2 Reproducing Kernel Hilbert Space

One could build a Hilbert space using the kernel such that the space can be equipped with an
inner product possessing a nice (reproducing) property.

We first state some basic functional analysis definitions for completeness.

Definition 2.2. An inner product space is a vector space X equipped with a function ⟨·, ·⟩ :
X ×X → R called an inner product such that

1. ⟨x, x⟩ ≥ 0 for all x ∈ X.
2. ⟨x, x⟩ = 0 ⇐⇒ x = 0.
3. ⟨λx+ µy, z⟩ = λ⟨x, z⟩+ µ⟨y, z⟩ for all λ, µ ∈ R and x, y, z ∈ X.
4. ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ X.

A consequence of having an inner product space structure is that we have theCauchy-Schwartz
inequality, i.e.

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥ (4)

for any x, y ∈ X and ∥x∥ :=
√
⟨x, x⟩ is the norm.

Definition 2.3. An inner product space (X, ⟨·, ·⟩) is a Hilbert space if it is complete in the
induced norm ∥ · ∥, i.e. every Cauchy sequence in the space converges.

Next, we wish to define a specific type of Hilbert space that is the central concept of this section.

Definition 2.4. A reproducing kernel Hilbert space (RKHS) Hk with positive definite kernel
k : X × X → R on the set X needs to satisfies the following conditions

1. k(x, ·) ∈ Hk for all x ∈ X .
2. (reproducing) f(x) = ⟨f, k(x, ·)⟩Hk

for all x ∈ X and f ∈ Hk.

Here, ⟨·, ·⟩Hk
is the inner product equipped by the RKHS Hk.

The above definition of an RKHS is slightly mysterious and abstract. We will, in a relatively
hand-wavy manner, construct an RKHS using a kernel k below to illustrate the point.
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Building an RKHS

Fix a positive definite kernel k : X × X → R, and define the base space H0
k as

H0
k := span{k(x, ·) | x ∈ X} =

{
f(·) =

n∑
i=1

cik(xi, ·) | n ∈ N, c1, . . . , cn ∈ R, x1, . . . , xn ∈ X

}
.

It should be immediate that H0
k is a vector space over R by looking at its explicit constructions

of each element f .

Next, we wish to equip this space with an inner product. We will force this inner product to
have the reproducing property, in the sense that

f(x) = ⟨f, k(x, ·)⟩Hk
∀f ∈ H0

k , x ∈ X .

This inner product with reproducing property is the defining feature of an RKHS. Consider some
f, g ∈ H0

k that can be written in the following form

f =

n∑
i=1

aik(xi, ·), g =

m∑
j=1

bjk(yj , ·).

We can calculate their inner product

⟨f, g⟩Hk
=

∑
i

∑
j

aibj⟨k(xi, ·), k(yj , ·)⟩Hk
=

∑
i

∑
j

aibjk(xi, yj)

which can be directly used as a definition of the inner product ⟨·, ·⟩Hk
.

One could also use the above formulation to define the corresponding norm of the RKHS, which
is

∥f∥2Hk
= ⟨f, f⟩Hk

=
∑
i

∑
j

aiajk(xi, xj).

Naturally, one would want to check if the inner product we just defined is indeed an inner product
on H0

k . Also, if the way of writing f ∈ H0
k in terms of sums is unique. It turns out that it is

indeed an inner product, and any equivalent linear formulation of the function f would yield the
same value under the inner product. The proofs are omitted here and can be found in Chapter
1 of Berlinet and Thomas-Agnan (2011).

Finally, the current space H0
k is not complete, and we will make it complete by simply taking its

closure with respect to the induced norm ∥ · ∥Hk
, which is formally stated as

Hk = H0
k .

This gives us a complete inner product space, which is simply called a Hilbert space, Hk with
equipped inner product ⟨·, ·⟩Hk

satisfying the reproducing property - and we have finished our
construction of an RKHS using a positive definite kernel k.

2.2 Kernel Stein Discrepancy

We will derive the kernel Stein discrepancy in this section.
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2.2.1 Kernel Mean Embedding and Maximum Mean Discrepancy

Consider a positive definite kernel k : X ×X → R and its RKHS Hk. A direct application of an
RKHS is we can represent probability measures supported on X as points in the RKHS.

Consider a probability measure P on X that admits density p. We define

µP :=

∫
k(x, ·)dP (x) =

∫
k(x, ·)p(x)dx

which is called the kernel mean embedding. Using this, for any f ∈ Hk, we have

EP [f(X)] =

∫
f(x)dP (x) =

∫
⟨f, k(x, ·)⟩dP (x) =

〈
f,

∫
k(x, ·)dP (x)

〉
= ⟨f, µP ⟩

which should illustrate the purpose of the above definition. The name of the kernel mean em-
bedding is because we can consider µP as a function that takes a probability measure P to an
element in the RKHS Hk using the mapping defined above, by focusing only on the mean of the
distribution under the kernel. A direct consequence of this definition is that we can compare
distributions P,Q supported on X by comparing their embeddings µP , µQ in Hk using the RKHS
norm. This gives us the maximum mean discrepancy (MMD)

MMD(P∥Q) := ∥µP − µQ∥Hk
.

Before drawing the connection between MMD and IPM, we first need to make some remarks on
checking if µP , µQ are indeed elements of Hk.

Proposition 2.5. If EP [
√
k(X,X)] < ∞, then µP ∈ Hk and

∫
fdP = ⟨f, µP ⟩Hk

for any
f ∈ Hk.

Proof. Define an operator L as Lf =
∫
fdP . We have

|Lf | =
∣∣∣∣∫ f(x)dP (x)

∣∣∣∣
≤

∫
|f(x)|dP (x) Jensen inequality

=

∫
|⟨f, k(x, ·)⟩Hk

| dP (x) reproducing property

≤
∫

∥f∥Hk
∥k(x, ·)∥Hk

dP (x) Cauchy Schwartz inequality

= ∥f∥Hk

∫ √
k(x, x)dP (x) definition of norm

< ∥f∥Hk
·M

for some constant M > EP [
√

k(X,X)]. This indicates that L is a bounded (linear) operator
from Hk to R.

Using the Riesz representation theorem, since L is a bounded functional, there exists a unique
element g ∈ Hk such that

Lf = ⟨f, g⟩Hk

for all f ∈ Hk. Additionally, if we pick f(·) = k(y, ·) for some y ∈ X , we have

h(y) = ⟨k(y, ·), h⟩Hk
= ⟨f, g⟩Hk

= Lf =

∫
k(y, x)dP (x)
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which means, by the symmetry of k,

Hk ∋ h =

∫
k(x, ·)dP (x) = µP

as desired.

Next, we will show the connection between MMD and IPM, as promised. In fact, MMD is just
IPM with the considered set of test function H being H = {h ∈ Hk, ∥h∥Hk

≤ 1}.

Proposition 2.6. For probability distributions P,Q, we have

MMD(P∥Q) = sup
h∈H

|EP [h(X)]− EQ[h(X)]| (5)

where H = {h ∈ Hk, ∥h∥Hk
≤ 1}.

Proof. First, for any h ∈ Hk, we have

|EP [h(X)]− EQ[h(X)]| =
∣∣∣∣∫ h(x)dP (x)−

∫
h(y)dQ(y)

∣∣∣∣
= |⟨h, µP ⟩Hk

− ⟨h, µQ⟩Hk
|

= |⟨h, µP − µQ⟩Hk
|

using the definition of the kernel mean embedding. If we take the supremum of the above quantity
over H, we can use Cauchy Schwartz inequality to show that the optimal choice of h needs to
be linearly dependent of µP − µQ. Since we further have the condition that ∥h∥Hk

≤ 1 due to
our choice of H, we have the optimiser

h∗ = (µP − µQ)/∥µP − µQ∥Hk
,

which gives us

sup
h∈H

|EP [h(X)]− EQ[h(X)]| = |⟨h∗, µP − µQ⟩Hk
| = ∥µP − µQ∥Hk

= MMD(P∥Q)

as desired.

2.2.2 Kernel Stein Discrepancy

We are one step away from defining the kernel Stein discrepancy. Notice the Stein discrepancy
of Equation (3) is very similar to the maximum mean discrepancy of Equation (5) using RKHS.
As long as we can show that the set H = {h ∈ Hk, ∥h∥Hk

≤ 1} can be the Stein class of some
Stein operator for some choice of kernel, then the connection can be fully drawn.

We will use the Langevin Stein operator as a starting point. For distribution P with density p,
its Langevin Stein operator JP , provided by Definition 1.2, is

JP f(x) = ⟨∇x log p(x), f(x)⟩+ ⟨∇, f(x)⟩.

We will also use the following derivative kernel properties

∇f(x) = ⟨f,∇k(x, ·)⟩Hk
, ∇k(x, x′) = ⟨k(x, ·),∇k(x′, ·)⟩Hk
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for differential kernel k and f ∈ Hk. These results are proved in Steinwart and Christmann
(2008).

Next, we try to rewrite JP using a differential kernel k and inner product ⟨·, ·⟩Hk
in its RKHS.

We have

JP f(x) = ⟨∇x log p(x), f(x)⟩+ ⟨∇, f(x)⟩
= ⟨f,∇x log p(x)k(x, ·)⟩Hk

+ ⟨f,∇k(x, ·)⟩Hk

= ⟨f, [∇x log p(x)k(x, ·) +∇k(x, ·)]⟩Hk

=: ⟨f, ξk(x)⟩Hk
.

Then, the Stein discrepancy using the Langevin Stein operator will be maximising

|EQ[JP f(X)]| = |⟨f,EQ[ξk(X)]⟩Hk
|

If we maximise it over H = {h ∈ Hk, ∥h∥Hk
≤ 1}, we then have

sup
f∈H

|EQ[JP f(X)]| = sup
f∈H

|⟨f,EQ[ξk(X)]⟩Hk
| = ∥EQ[ξk(X)]∥Hk

which is

∥EQ[ξk(X)]∥2Hk
= ∥EQ [∇X log p(X)k(X, ·) +∇k(X, ·)]∥2Hk

= EX,Y∼Q[∇X log p(X)∇Y log p(Y )k(X,Y ) +∇X log p(X)∇Y k(X,Y )

+∇Y log p(Y )∇Xk(X,Y ) + tr(∇XY k(X,Y ))].

This gives us the desired kernel Stein discrepancy (KSD) between probability measures P,Q.

Definition 2.7. For two probability measures P,Q with support on X that admit densities p, q
respectively, consider a differentiable (and sufficiently nice) kernel k : X × X → R and its
corresponding RKHS Hk, the kernel Stein discrepancy with respect to P KSD(P∥Q) is defined
by

KSD(P∥Q)2 = sup

f∈
{

h∈Hk

∥h∥Hk
≤1

} |EQ[SP f(X)]|2 = EX,Y∼Q[kP (X,Y )] ≈ 1

n

n∑
i,j=1

kP (xi, xj) (6)

where H = {h ∈ Hk, ∥h∥Hk
≤ 1} and

kP (X,Y ) = sP (X)sP (Y )k(X,Y )+sP (X)∇Y k(X,Y )+sP (Y )∇Xk(X,Y )+tr(∇XY k(X,Y )) (7)

where sP (X) = ∇X log p(X) and sP (Y ) = ∇Y log p(Y ).

This has turned our Stein discrepancy from a supremum over an infinite set to an expectation
- which is suddenly magnitudes better computationally. In the case of only having an empirical
distribution Qn of Q made up of samples x1, x2, . . . , xn, we have

KSD(P∥Qn)
2 =

1

n

n∑
i,j=1

kP (xi, xj).

Note that we have ignored some technical details on the existence and correctness of certain
things. These can be found in references of Anastasiou et al. (2023). Also, we limit our dis-
cussion to continuous distributions. The kernel Stein discrepancy can be extended to discrete
distributions too, which we omit for now.
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