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Preface

This is the notes taken while taking MATH0069 Probability taught by Prof Nadia Sidorova at
UCL in Term 2, 2023.

In the first chapter, we will cover the foundation of probability theory, i.e. define a probability
space, a random variable etc. It would be mostly tedious technical work but they are necessary
preliminary work needed for the following content. In Chapter 2, we will study the concept of
independence, which is the key idea that makes probability theory not mere measure theory. We
will also introduce the concept of tail events and the interesting result of Kolmogorov 0-1 law.
In Chapter 3, we will cover two key and central results in probability - the (strong) law of large
numbers and the central limit theorem. In the final chapter, we will dive into martingales, which
is a particularly nice class of stochastic processes with interesting properties.

Familiarities with measure theory are compulsory, and we will use results from measure theory
directly every now and then. Some essential definitions and results are contained in the Appendix,
such as the monotone convergence theorem and dominated convergence theorem.

The course (and therefore this notes) is based on Williams’ Probability with Martingales.
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Chapter 1

Rigorous Introduction to Basic
Probability

1.1 Probability Space and Random Variables

Definition 1.1. (Ω,Σ,P), where (Ω,Σ) is a measure space and P is a probability measure (i.e.
measure with P(Ω) = 1) on (Ω,Σ), is a probability space. Furthermore, we call Ω as the
sample space, and Σ as the event space.

Definition 1.2. A measurable function X : Ω → R, equipped with Σ and the completed Borel
σ-algebra B, is called a random variable.

This is the formal definition of a random variable. Let us see some familiar and unfamiliar
examples to solidify our understanding of this concept.

Example. Coin Toss.

(a) Ω = {0, 1}, Σ = 2Ω, and P({0}) = P({1}) = 1/2. The desired random variable X is defined
by 0 7→ 0 and 1 7→ 1.

(b) Ω = [0, 1], Σ = B[0, 1], P = Leb. The random variable is defined by

X(ω) =

{
0 ω ∈ [0, 1

2 )

1 ω ∈ [ 12 , 1].
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The two characterisations of the random variable are in fact identical, in the sense that they yield
the same law (and thus distribution) of the random variable. The exact meanings of these terms
will be clarified in the following section. At this stage, we will just need to understand that they
are alternative, but equivalent, ways to define a probability space and a random variable that
mean the same thing. In practice, we will use the most convenient characterisation, depending
on our purposes.

Example. Roll a dice, spell the number, and take the number of letters.

(a) Ω = {1, 2, 3, 4, 5, 6}, Σ = 2Ω, and P({1}) = · · · = P({6}) = 1/6, extended by additivity.
The desired random variable X is defined by

X :



1 7→ 3

2 7→ 3

3 7→ 5

4 7→ 4

5 7→ 4

6 7→ 3.

(b) Ω = {0, 1, 2, 3, 4, 5, 6}, Σ = 2Ω, and P({0}) = 0,P({1}) = · · · = P({6}) = 1/6, extended
by additivity. The random variable is defined the same as above, and it maps 0 to any
arbitrary thing. It would not matter as 0 occurring has probability 0.

(c) Ω = {3, 4, 5}, Σ = 2Ω, and P({3}) = 1/2,P({4}) = 1/3,P({5}) = 1/6, extended by
additivity. The random variable is defined to be the identity map on Ω.

As above, the goal of this example is to illustrate the point that different characteristics could
produce the same random variable.

Example. Toss 2 coins, and take the sum of the outcomes.

Ω = {0, 1}×{0, 1}, Σ = 2Ω, P({each point}) = 1/4, extended by additivity. The random variable
is defined by

X :


(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 2.

The above example is not too hard. But what if we toss, not two but, an infinite number of
coins consecutively? What would things look like? A natural way of extending to this case is
to consider Ω to be the infinite Cartesian product of {0, 1}, and define other things accordingly.
There are a lot of technical details that we need to take care of, for example we could not use the
simple power set as our Σ as Ω is no longer finite. Those technical difficulties could be overcome,
but we do not do them here. Instead, we have the following characterisation of this random
variable that involves a neat little trick.

Example. Toss a coin consecutively, so a possible outcome would be HTHHTHTHTHT ...

The idea behind these characteristics is the following. We will denote each possible outcome as
0.x1x2x3x4 . . . where xi ∈ {0, 1}. This is a binary number in [0, 1]. Furthermore, each outcome
corresponds to a point in this closed interval. The correspondence is as the following: We will
cut the unit interval into two halves, pick left if the first digit after the decimal point is 0, and
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pick right if it is 1. Then, we will cut the interval we pick into halves, pick left if the second digit
is 0 and pick right if it is 1. And it goes on like that.

One potential issue is that two outcomes might correspond to the same point. For example, 0.01
and 0.0011111 . . . will correspond to the same point on the unit interval. This is not an actual
issue. Because the set of such troublesome points (e.g. 1/2, 1/4, 3/4) forms a countable set, so
it has Lebesgue measure 0 and therefore would not affect our set-up.

Therefore, we have Ω = [0, 1], Σ = B[0, 1], P = Leb. A potential event, say the event of the
first toss being head, corresponds to the right half of the unit interval in the Ω by the way we
construct it. The event of the second toss being tail then corresponds to the first and third (from
the left) quarters of the unit interval.

The random variable will be to map a point in [0, 1] to the reverse-engineered string of binary
numbers corresponding to heads and tails.

1.2 Law and Distribution of Random Variables

Definition 1.3. µ(B) := P(X−1(B)) for all B ∈ B is the law of the random variable X.
F (X) := µ((−∞, x]) for x ∈ R is the distribution function of random variable X.

The idea behind the second form is that (−∞, x] with all possible x is a generating set for the
Borel set B too, and that form of the function is much easier to deal with than the first form.

Essentially, if two objects have the same law (and thus the same distribution function), then
they are the same random variable. Using this, we can confirm our previous remark on the
equivalence of the various characteristics of random variables for the examples. The following
diagram illustrates roughly why the two characterisations of the coin toss random variable are
equivalent.
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We will sometimes use the Dirac measure at x, which we denote it as δx, and it is defined as

δx(B) =

{
1 x ∈ B

0 x /∈ B.

So, the law µ of the above coin toss random variable can also be written as

µ =
1

2
δ0 +

1

2
δ1.

We can also draw the distribution function for the above coin toss example.

This distribution function has some properties, such as it is increasing and it is between 0 and
1. In fact, there are several universal properties of a distribution function.

Theorem 1.4 (Properties of Distribution Function). We have, for any distribution function F ,

1. F is increasing.
2. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.
3. F is right-continuous.

Proof. (1) For s < t, we have

F (s) = µ((−∞, s]) ≤ µ((−∞, t]) = F (t)

where the inequality is due to the monotonicity of measure, and the two equalities are simply
definitions.

(2) Take {tn} with tn ↗ ∞1. We have

lim
n→∞

F (tn) = lim
n→∞

µ((−∞, tn]) = µ(∪∞
i=1(−∞, tn]) = µ(R) = 1

where the second equality uses the continuity of measure, and the last equality uses the fact that
µ is a probability measure. Similarly, take {tn} with tn ↘ −∞2. We have

lim
n→∞

F (tn) = lim
n→∞

µ((−∞, tn]) = µ(∩∞
i=1(−∞, tn]) = µ(∅) = 0

where the second equality uses the continuity of measure.

(3) Let t ∈ R, and take {tn} with tn → t+3. We have

lim
n→∞

F (tn) = lim
n→∞

µ((−∞, tn]) = µ(∩∞
i=1(−∞, tn]) = µ((−∞, t]) = F (t).

1tk ≤ tk+1 for all k, and tk → ∞ as k → ∞.
2tk ≥ tk+1 for all k, and tk → −∞ as k → ∞.
3tk ≥ t for all k and tk → t as k → ∞.
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Remark. The reason why F is right-continuous is based on the way it is defined, i.e. F (X) :=
µ((−∞, x]). If we define it as F (X) := µ((−∞, x)), which is perfectly fine, we would have F being
left-continuous. The version of F with right-continuity was the version chosen by Kolmogorov
for whatever reason, therefore it is the version that everyone uses.

We know that given a random variable, we can find a distribution function for it. It turns out
that the reverse is true, i.e. given a distribution function we can find a random variable for it.
The construction that takes a distribution function and produces a random variable is called
Skorokhod Construction.

Theorem 1.5 (Skorokhod Construction). Let F : R → R be a function satisfying the properties
of a distribution function as shown in Theorem 1.4. Then, there exists a random variable X
such that F is its distribution function.

Remark. This result allows us to work with just the distribution functions and to not worry
about the probability space which could be troublesome to determine sometimes.

Proof. Consider ([0, 1],B[0, 1], Leb) to be the probability space that this random variable is in.

We will first prove an easy version of this result with additional conditions on F . This illustrates
the essence of the proof. Next, we will remove those conditions and prove the original statement.

Suppose F is, in addition, strictly increasing and continuous. This means that the inverse of this
function is well-defined. The desired random variable is then simply

X(ω) =

{
F−1(ω), ω ∈ (0, 1)

anything, ω ∈ {0, 1}.

We let FX denotes the distribution function of X. We have

FX(t) = µX((−∞, t])

= P (X−1((−∞, t]))

= Leb({ω ∈ [0, 1] | X(ω) ∈ (−∞, t]}) := Leb({X ≤ t})
= F (t)

as desired.
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Now we will prove this theorem without the extra condition.

There are two things that will be problematic if we want to use the same approach. The first
thing is a constant piece in the distribution, and the second is a jump in the distribution. These
two things avoid us from taking the straightforward inverse. The good news is that we can work
around them.

We define the function G that works as a pseudo-inverse of F . We have

G(ω) = inf{u | F (u) > ω}

What this definition does is that it converts a constant path into a jump, and a jump to a
constant path taking the position after the jump.

We define our random variable X(ω) = G(ω), and we would like to check that it has the desired
distribution function. This is the same as checking

[0, F (t)) ⊂ {ω ∈ [0, 1] | X(ω) ∈ (−∞, t]} ⊂ [0, F (t)]

which is equivalent to the desired result after taking the Lebesgue measure to everything (notice
that the middle quantity will be bounded by F (t), thus is equal to F (t)).

For the first relationship, for ω ∈ [0, F (t)), we have

X(ω) = inf{u | F (u) > ω} ≤ t

so X(ω) ∈ (−∞, t]. For the second relationship, if we have ω with X(ω) ≤ t, i.e. inf{u | F (u) >
ω} ≤ t, then we can apply F to both sides and get

inf{F (u) | F (u) > ω} ≤ F (t) =⇒ ω ≤ F (t),

so ω ∈⊂ [0, F (t)]. Done.

1.3 Examples of Random Variables and Their Distribu-
tions

Definition 1.6. A random variable with distribution function F is called a continuous random
variable if F can be written as

F (t) =

∫ t

−∞
f(s)ds

for some Lebesgue integrable function f and f is called the density. We would also say F admits
a density f to mean the same thing.

Naturally, if F admits a density f , then we would have f = F ′, i.e. f is the derivative of F .
Additionally, each f would have the property∫ ∞

−∞
f(s)ds = 1

as limt→∞ F (t) = 1.
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Definition 1.7. A random variable X is called a discrete random variable if there exists
finite or countably many a1, a2, . . . ∈ R and p1, p2 . . . ∈ [0, 1] with

∑
pi = 1 such that we have

P(X = ai) = pi ∀i = 1, 2, . . . .

In this case, the distribution function F of X is defined to be

F (x) = P(X ≤ x) =
∑

i:ai≤x

P(X = ai) =
∑

i:ai≤x

pi.

Now, we will provide some basic examples of random variables, which should be familiar.

Example. Uniform random variable on [a, b], denoted by Unif [a, b]. It has distribution function
F defined by

F (x) =


1 x > b
x−a
b−a x ∈ [a, b]

0 x < a

and it admits the density f defined by

f(x) =

{
1

b−a x ∈ [a, b]

0 x /∈ [a, b].

Example. Exponential random variable with parameter µ, denoted by Exp(µ). It has distribu-
tion function F defined by

F (x) =

{
1− e−x/µ x > 0

0 x ≤ 0

and it admits the density f defined by

f(x) =

{
µe−x/µ x > 0

0 x ≤ 0.
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Example. Normal random variable with mean µ and variance σ2, denoted by N(µ, σ2). It has
distribution function F defined by

F (x) =

∫ x

−∞
f(s)ds

and it admits the density f defined by

f(x) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]
.

The three examples above are continuous random variables. The two examples below are discrete
random variables.

Example. Bernoulli random variable X with success probability p, denoted by Ber(p). It takes
0 and 1, with P(X = 1) = p and P(X = 0) = 1− p.

Example. Poisson random variable X with mean µ, denoted by Poi(µ). It takes natural num-
bers, with P(X = k) = e−µµk/k! for all k = 0, 1, 2, . . ..

Of course, we could have random variables that are neither discrete nor continuous. A trivial
way to obtain such a random variable is to be a mixture of a discrete random variable and a
continuous random variable, for example this random variable X will be like a Unif [0, 1] with
probability 1/2 and be like a Ber(0.1) with probability 1/2. However, we can have something
constructed less trivially. For example, a uniform distribution on the Cantor set.
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1.4 Expectation

Definition 1.8. Let X be Lebesgue integrable. Then,

E(X) =

∫
Ω

XdP

is called the expectation of X. If X ≥ 0 and is not Lebesgue integrable, then E(X) = ∞.
Similarly, if X ≤ 0 and is not Lebesgue integrable, then E(X) = −∞.

Theorem 1.9. Let h : R → R be integrable with regards to µ. Then, we have

E[h(X)] =

∫
Ω

h(X)dP =

∫
R
hdµ.

Proof. The proof of this is very similar to the proof of Lebesgue integrals. We will do the first
part and the rest will be almost identical.

Consider h = 1B for some B ∈ B. Then, we have∫
Ω

h(X)dP =

∫
Ω

1B(X)dP = P(X ∈ B)

and ∫
R
hdµ =

∫
R
1Bdµ = µ(B),

which really are equal by the definition of µ.

This result also allows us to recover the familiar expectation formula for discrete and random
variables. For a discrete random variable X that takes ai with probability pi, we have

E[h(X)] =

∫
hdµ =

∫
h(
∑

piδai) =
∑

pih(ai).

For a continuous random variable X with density f , we have

E[h(X)] =

∫
hdµ =

∫
h(x)f(x)dx.

A simple yet powerful result is the Markov inequality.

Theorem 1.10 (Markov Inequality). Let X be a non-negative integrable random variable. Then,
for any c ∈ R, we have

c · P(X > c) ≤ E[X].

Proof. This result is obvious for any c ≤ 0 since X is non-negative. For c > 0, we consider this
random variable Y := c1{X>c}. Notice that Y ≤ X almost surely, so we have

c · P(X > c) = E[Y ] ≤ E[X],

as desired.
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Corollary 1.11. Let X be a non-negative integrable random variable with Xn being integrable
as well for some integer n. Then, for any c > 0, we have

cnP(Xn > cn) ≤ E[Xn].

Such inequalities are known as concentration inequalities, and they allow us to provide bounds
for the tails of the distribution. This is frequently used in high-dimensional statistics (and
probability).

Definition 1.12. If X is square integrable, i.e. E[X2] < ∞, then

Var[X] = E[(X − E(X))2] = E[X2]− E[X]2

is the variance of X.

Lemma 1.13. E[X2] < ∞ =⇒ E[|X|] < ∞.

Proof. Using Cauchy-Schwartz, we have

E[|X|] = E[|X| · 1] ≤
√

E[X2] ·
√
1 =

√
E[X2] < ∞,

as desired.
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Chapter 2

Independence and Tail Events

Definition 2.1. Let (Ω,Σ,P) be a probability space.

• σ-algebras Σ1,Σ2, . . . ,Σn ⊂ Σ are independent if

P(A1 ∩ · · · ∩An) = P(A1) · · ·P(An)

for any A1 ∈ Σ1, . . . , An ∈ Σn. Additionally, σ-algebras Σ1,Σ2, . . . ⊂ Σ are independent if
for any m, Σ1,Σ2, . . . ,Σm are independent.

• Events E1, E2, . . . ∈ Σ are independent if their generated σ-algebras1 σ(E1), σ(E2), . . . are
independent.

• Random variables X1, X2, . . . on (Ω,Σ,P) are independent if their generated σ-algebras2

σ(X1), σ(X2), . . . are independent.

For two objects A,B that are independent, we will denote it by A ⊥ B.

2.1 π-Systems

This definition is obviously too cumbersome to check in reality, especially when we would like to
check for the independence of events and random variables.

For events A1, . . . , An, to check for independence, we just need to check that

P(Ak1
∩Ak2

∩ · · · ∩Akm
) = P(Ak1

)P(Ak2
) · · ·P(Akm

)

for all possible {k1, k2, . . . , km} ⊂ {1, 2, . . . , n}. So, for events A,B,C, we just need to check for
the triple and all pairs.

This is fine since many possible combinations are equivalent to some of the above. This inspires
the following.

Definition 2.2. I ⊂ Σ is called a π-system if we have

1. ∅ ∈ I
2. A,B ∈ I =⇒ A ∩B ∈ I.
1σ(E) = {E,Ω\E, ∅,Ω}
2σ(X) = {X−1(B) | B ∈ B}
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Example. Consider the base set R. I = {(−∞, x] | x ∈ R} ∪ {∅} is a π-system and σ(I) = B.
Alternatively, we could have (−∞, x) instead of (−∞, x], or (a, b) for a < b ∈ R. Both these two
alternatives will generate B.

Example. Assume ∅ is included, all closed rectangles in R2 form a π-system, while all closed
discs in R2 do not.

Example. Consider the probability space (Ω,Σ,P), and let X be a random variable on it. The
σ-algebra of X is σ(X) = {{X ∈ B} | B ∈ B}. If we use the π-system from the above example
instead of B, we could get a π-system too. So, we have I = {{X ≤ x} | x ∈ R} ∪ {∅}, and
σ(I) = σ(X).

Example. Consider the probability space (Ω,Σ,P), and letX be a discrete random variable on it
with values a1, a2, . . .. Similar to the above example, we have I = {{X = a1}, {X = a2}, . . .}∪{∅}
and σ(I) = σ(X).

Why should we care about π-systems? Well, given two π-systems I and J , with σ(I) = σ(X) and
σ(J ) = σ(Y ) for random variables X and Y , and we have I ⊥ J , which implies σ(X) ⊥ σ(Y ),
and therefore X ⊥ Y .

Theorem 2.3. If π-systems I and J are independent, i.e. P(I ∩ J) = P(I)P(J) for all I ∈ I
and J ∈ J , then their generated σ-algebras σ(I) and σ(J ) are independent.

The proof requires an auxiliary result from measure theory which we will not prove.

Theorem 2.4. Let I be a π-system. Let µ1, µ2 be measures on (Ω, σ(I)) such that (1) µ1(Ω) =
µ2(Ω) < ∞, and (2) µ1 = µ2 on I. Then, we have µ1 = µ2 on σ(I).

Let us prove the desired theorem.

Proof. Fix J ∈ J . Let µ1(A) = P(A ∩ J) where A ∈ σ(I), and µ2(A) = P(A)P(J) where
A ∈ σ(I). Clearly, µ1(Ω) = µ2(Ω) < ∞, and µ1 = µ2 on I by the condition of the theorem.
Therefore, µ1 = µ2 on σ(I), which means P(A ∩ J) = P(A)P(J) for any A ∈ σ(I).

We just need to repeat the process for a fixed I ∈ I to obtain the second half of the proof, which
we will omit.

Corollary 2.5. Two random variables X and Y are independent if and only if the π-systems
{{X ≤ x} | x ∈ R} ∪ {∅} and {{Y ≤ y} | y ∈ R} ∪ {∅} are independent, i.e. we have

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)

for all x, y ∈ R.

Corollary 2.6. Two discrete random variables X with values a1, a2, . . . and Y with values
b1, b2, . . . are independent if and only if

P(X = ai, Y = bj) = P(X = ai)P(Y = bj).

for all possible ai and bj.
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2.2 Independent Random Variables from Distributions

Recall from the previous chapter that we can construct a random variable given a distribution
function (Skorokhod’s construction, Theorem 1.5). Now, given a sequence of distribution func-
tions, can we then construct a sequence of random variables such that each follows the respective
distribution function and they are independent?

We would not be able to use the same tricks as Skorokhod’s constructions as they do not allow
us to inject independence into the random variables. Some adjustments are required, and we
will start with the case of two distribution functions.

Let us formulate our problem nicely. Consider we have two distribution functions F1 and F2, we
would like to construct two random variables X1 and X2 such that:

1. X1, X2 have distribution functions F1, F2 respectively.
2. X1 and X2 are independent.

First, using Skorokhod construction, we can construct X̃1 on (Ω1,Σ1,P1) with distribution func-
tion F1, and X̃2 on (Ω2,Σ2,P2) with distribution function F2. The two probability spaces do
not have to be the same.

Next, we will consider the probability space (Ω,Σ,P) := (Ω1 × Ω2,Σ1 × Σ2,P1 ⊗ P2) where
× denotes the Cartesian product and ⊗ is the product measure. Next, we define two random
variables X1 and X2 as projections onto their respective spaces and be identical to X̃1 and X̃2.
This is achieved by defining

X1(ω) = X1(ω1, ω2) = X̃1(ω1)

X2(ω) = X2(ω1, ω2) = X̃2(ω2).

This means we would have, for any x ∈ R,

P1 ⊗ P2(X1 ≤ x) = P1 ⊗ P2({X1 ≤ x} × Ω) = P1({X1 ≤ x})P2(Ω) = P1({X1 ≤ x})

where the second last equality follows from the definition of a product measure. We could do the
same for the event X2 ≤ x. This means the first condition is achieved, i.e. the random variables
have their respective distribution functions.

Then, to show X1 and X2 are independent, we have, for any x, y ∈ R,

P1 ⊗ P2(X1 ≤ x,X2 ≤ y) = P1 ⊗ P2({X1 ≤ x} × {X2 ≤ y})
= P1({X1 ≤ x})P2({X2 ≤ y})
= P1 ⊗ P2(X1 ≤ x)P1 ⊗ P2(X2 ≤ y),

as desired.

Now, we will try to do the same but with a countable sequence of distribution functions F1, F2, . . ..

If we attempt to use the same strategy as above, we would require an infinite product of spaces and
measures, which is not easy to work with. A trick is thus needed to make sure the construction
is still valid. Note that this construction is not examined.

Consider we have two distribution functions F1 and F2 with their pseudo-inverses as “F−1
1 ”

and “F−1
2 ” which is the inverse that accounts for jumps and constant pieces. Then, we have

two independent random variables U1 and U2 following Unif [0, 1]. Then, the composed random
variable U1 ◦ “F−1

1 ” and U2 ◦ “F−1
2 ” will be independent too.
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It is easy to construct random variables with the desired distribution functions, as we have
the Skorokhod construction. The independence requirement can also be solved now using this
uniform random variable trick. The question thus is transformed into constructing a sequence of
independent Unif [0, 1].

On ([0, 1],B,P), the uniform random variable Unif [0, 1] maps ω ∈ [0, 1] → ω. Recall that we
can write any number between 0 and 1 using binary digits, and we thus have

ω = 0.ω1ω2ω3 . . .

where each ωi is Bernoulli with success rate 1/2. We can further realise that these ωis are all
independent.

Here comes the key part. We can have, given any ω = 0.ω1ω2ω3 . . .

0.ωa1
ωa2

ωa3
. . .

0.ωb1ωb2ωb3 . . .

0.ωc1ωc2ωc3 . . .

· · ·

where {ai}, {bi}, {ci}, . . . are disjoint, and their union is Z. One such construction of such
sequence is {2i}, {3i}, {5i} · · · . Furthermore, each of these values belongs to [0, 1] and is inde-
pendent Unif [0, 1]. Thus, we have finished the construction.

2.3 Consequences of Independence

Given independence, we can obtain some nice results about the expectation and variance.

Theorem 2.7. Given independent random variables X and Y , we have

1. If E[|X|],E[|Y |] < ∞, then E[XY ] = E[X]E[Y ].
2. If we also have E[X2],E[Y 2] < ∞, then Var[X + Y ] = Var[X] +Var[Y ].

Proof. The second result is a direct consequence of the first. We have

Var[X + Y ] = E[(X + Y )2]− [E(X + Y )]2

= E[X2 + 2XY + Y 2]− [E(X) + E(Y )]2

= E[X2] + 2E[X]E[Y ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

= E[X2]− E[X]2 + E[Y 2]− E[Y ]2

= Var[X] + Var[Y ],

as desired.

The first result can be obtained using the standard routine of measure theory proofs, from
indicator functions to simple functions to nonnegative functions to any functions. We will only
do the first part.

Consider X = 1A and Y = 1B such that X and Y are independent. We have

E[XY ] =

∫
1A1BdP = P(A ∩B),
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and
E[X]E[Y ] = P(A)P(B).

Since X and Y are independent, A and B are independent too, so

E[XY ] = P(A ∩B) = P(A)P(B) = E[X]E[Y ].

The rest is routine.

2.4 Joint Law and Joint Distribution

Definition 2.8. Let X and Y be random variables defined on the same probability space. Then,
the joint law on (R2,B(R2)) is defined as

µX,Y (B) = P((X,Y ) ∈ B).

And, the joint distribution function is defined by

FX,Y (x, y) = µ((−∞, x]× (−∞, y]) = P(X ≤ x, Y ≤ y).

Theorem 2.9. We have

1. If X,Y are independent, then FX,Y (x, y) = FX(x)FY (y).
2. If X and Y are independent and admit densities f and g, then µX,Y admits density with

regards to dxdy that is defined by (x, y) 7→ f(x)g(y), i.e.

µX,Y (B) =

∫
B

f(x)g(y) dxdy

for B ∈ B(R2).
3. If X,Y are as in the previous case, then X + Y has density

f ∗ g(t) =
∫
R
f(t)g(t− s)ds.

Remark. f ∗ g is called the convolution of the two functions.

Proof. (1) Notice that σ(X) is generated by the π-system {{X ≤ x}, x ∈ R} and σ(Y ) is
generated by the π-system {{Y ≤ y}, y ∈ R}. They are independent if and only if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)

which is equivalent to the desired equation.

(2) Consider B = (−∞, x]× (−∞, y]. We have

µX,Y (B) = µX,Y ((−∞, x]× (−∞, y])

= FX,Y (x, y) = FX(x)FY (y)

=

∫ x

−∞

∫ y

−∞
f(u)g(v)dudv

=

∫
B

f(u)g(v) dudv

17



as required. The equality holds for all B, which forms a π-system, so by Theorem 2.4, the
equality holds on the whole of B(R2).

(3) We have

FX+Y (t) = P(X + Y ≤ t)

=

∫ t

−∞

∫ ∞

−∞
P (X = s)P(Y = u− s)dsdu

=

∫ ∞

−∞

∫ t

−∞
P (X = s)P(Y = u− s)duds

=

∫ t

−∞

∫ ∞

−∞
P (X = s)P(Y = u− s)dsdu.

Taking derivative on both sides yields

fX+Y (t) =

∫ ∞

−∞
P (X = s)P(Y = t− s)ds =

∫
R
f(t)g(t− s)ds,

as desired.

2.5 Infinitely Often and Eventually

Let (Ω,Σ,P) be the probability space we are working in.

Definition 2.10. Let {En} be a sequence of events in Σ. We have

{En i.o.3} =

∞⋂
N=1

⋃
n≥N

En

and

{En ev.4} =

∞⋃
N=1

⋂
n≥N

En.

Notice that based on the definition, we have

{EC
n i.o.}C =

 ∞⋂
N=1

⋃
n≥N

EC
n

C

=

∞⋃
N=1

⋂
n≥N

En = {En ev.}.

So, any results about one of the two things can be easily transformed to be about the other.

The reason why we bring up these concepts is to better deal with strong convergence, i.e. Xn → X
a.s. This is the same as saying the event {ω ∈ Ω : Xn(ω) → X(ω)} has probability 1. We could

3infinitely often
4eventually
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simply have

{Xn → X} = {∀ε,∃N ∈ N,∀n ≥ N |Xn −X| ≤ ε}
= {∀k ∈ N,∃N ∈ N,∀n ≥ N |Xn −X| ≤ 1/k}

=

∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

{|Xn −X| ≤ 1/k}

=

∞⋂
k=1

{|Xn −X| ≤ 1/k ev.}.

Clearly, the events {|Xn − X| ≤ 1/k ev.} are decaying in k. So, to prove P(Xn → X) = 1 we
just need to show that

P(|Xn −X| ≤ 1/k ev.) = 1

or equivalently
P(|Xn −X| ≥ 1/k i.o.) = 0.

Two lemmas are needed to get a lot of nice results. Those two lemmas are the Borel-Cantelli
Lemma 1 and 2.

Lemma 2.11 (Borel-Cantelli Lemma). We have

1. If
∑∞

n=1 P(En) < ∞, then P(En i.o.) = 0.
2. If

∑∞
n=1 P(En) = ∞ and Ens are independent, then P(En i.o.) = 1.

Proof. (1) We want:

P

 ∞⋂
N=1

⋃
n≥N

En

 = 0 ⇐⇒ lim
N→∞

P

 ⋃
n≥N

En

 = 0

since
⋃

n≥N En is decreasing.

Notice that we have

P

 ⋃
n≥N

En

 ≤
∞∑

n=N

P(En)

which goes to 0 as N → ∞ since
∑∞

n=1 P(En) < ∞. So, by sandwich theorem, we have

lim
N→∞

P

 ⋃
n≥N

En

 = 0

as desired.

(2) We want:

P

 ∞⋂
N=1

⋃
n≥N

En

 = 1 ⇐⇒ P

 ⋃
n≥N

En

 = 1 ∀N ⇐⇒ P

 ⋂
n≥N

EC
n

 = 0 ∀N

since
⋃

n≥N En is decreasing.
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Notice that we have

P

 ⋂
n≥N

EC
n

 = lim
M→∞

P

(
M⋂

n=N

EC
n

)
= lim

M→∞

M∏
n=N

P
(
EC

n

)
= lim

M→∞

M∏
n=N

[1− P(En)] ≤ lim
M→∞

M∏
n=N

exp[−P(En)]

= lim
M→∞

exp

[
−

M∑
n=N

P(En)

]
= exp

[
− lim

M→∞

M∑
n=N

P(En)

]

= exp

[
− lim

M→∞

M∑
n=N

P(En)

]
= exp [−∞] = 0

where the inequality is due to the fact that 1 − x ≤ e−x for all x and the second equality is by
the independence of Ens.

−

One thing we can do with BC is to study the extreme values of a sequence of i.i.d. random
variables.

Let {Xn} be i.i.d. sequence of Exp(1), such that for any n we have

P(Xn > x) = e−x x > 0.

Consequently, for any α > 0, we have

P(Xn > α log n) = n−α.

We let Ln := Xn/ log n. We claim that with probability one we have lim supLn = 1. To show
this result, we need to establish that (1) for any k > 1, Ln > k only finitely many times, and (2)
for any k < 1, Ln > k infinitely often.

To show the first result, for k > 1, we have∑
n

P(Ln > k) =
∑
n

P(Xn > k log n) =
∑
n

n−k < ∞

so BC1 says that Ln > k finitely often with probability one.

To show the second result, for k < 1, we have∑
n

P(Ln > k) =
∑
n

P(Xn > k log n) =
∑
n

n−k = ∞

so BC2 says that Ln > k infinitely often.

Thus, we have established that lim supXn/ log n = 1.

The above is a special case, and now let us look at a more general result.

Let {Xn} be a sequence of i.i.d. random variables. With probability one, we have

lim sup
n→∞

|Xn|
n

=

{
0 if E[|X1|] < ∞
∞ if E[|X1|] = ∞
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The first case follows straight from the SLLN5. We have

Xn

n
=

X1 + · · ·+Xn

n
− X1 + ·+Xn−1

n− 1
· n− 1

n
→ E[X1]− E[X1] = 0 a.s.

In the second case, we cannot use SLLN since the expectation is infinity. We want

P
(
lim sup
n→∞

|Xn|
n

= ∞
)

= 1

P

( ∞⋂
m=1

{|Xn|/n > m i.o.}

)
= 1

P ({|Xn|/n > m i.o.}) = 1 for all m.

For each m, the events {|Xn|/n > m} for n ∈ N are independent and we have

∞∑
n=1

P(|Xn|/n > m) =

∞∑
n=1

P(|X1|/n > m) =

∞∑
n=1

E(1{|X1|/n>m})

= E

[ ∞∑
n=1

1{|X1|/n>m}

]
MON

= E

[ ∞∑
n=1

1{|X1|/m>n}

]
≥ E

[
|X1|
m

− 1

]
= ∞.

The rest follows from BC.

We will state without proof the following theorem that is an advancement of the above results.

Theorem 2.12 (Law of Iterated Logarithm). Let {Xn} be a sequence of i.i.d. random variables
with mean 0 and variance 1. Let us then denote Sn := X1 + · · ·+Xn. We have,

lim sup
n→∞

|Sn|√
2n log log n

= 1 a.s.

−

Next, we will try to prove the strong law of large number (SLLN) under strong conditions. The
proof requires the Borel-Cantelli Lemma as well as the Bernstein Inequality. Let us prove this
new inequality first.

Theorem 2.13 (Bernstein Inequality). Let {Xn} be a sequence of i.i.d. random variables with
P(Xi = 1) = P(Xi = −1) = 1/2 for all i. Then, for any a1, a2, . . . ∈ R that are not all zero, we
have

P

(∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
− t2

2
∑n

i=1 a
2
i

]
.

Proof. We let c =
∑n

i=1 a
2
i and consider some λ > 0. Then, we have

E exp

[
λ

n∑
i=1

aiXi

]
= E

n∏
i=1

eλaiXi =

n∏
i=1

EeλaiXi .

5SLLN states that for an i.i.d. sequence with finite expectation, their means converge to the expectation
almost surely. Various forms of this result will be proved throughout this notes.
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Additionally, we have

EeλaiXi =
1

2
[eλai + e−λai ]

and
[eλai/2]2 + [e−λai/2]2 ≤ 2.

Note that we have

(ex + e−x)/2 =
1

2

∞∑
n=1

xn + (−x)n

n!
=

∞∑
k=1

x2k

(2k)!
≤

∞∑
k=1

x2k

2k · k!
=

∞∑
k=1

(x2/2)k

k!
= ex

2/2.

So, we have
n∏

i=1

EeλaiXi ≥
n∏

i=1

eλ
2a2

i /2 = eλ
2 ∑

a2
i /2 = eλ

2c/2.

Using the Markov inequality, we get

P

[
n∑

i=1

aiXi ≥ t

]
= P

[
exp{λ

∑
aiXi} ≥ eλt

]
≤ E exp{λ

∑
aiXi} · e−λt) ≤ eλ

2c/2−λt.

This holds for all λ, so pick the value that minimises the upper bound, which is λ = t/c. Thus,
we get

P

[
n∑

i=1

aiXi ≥ t

]
≤ e−t2/(2c)

and similarly

P

[
n∑

i=1

aiXi ≤ −t

]
≤ e−t2/(2c)

which gives us the desired result after combining them.

This helps us to obtain the SLLN under strong conditions.

Theorem 2.14. Let {Xn} be a sequence of i.i.d. random variables with P(Xi = 1) = P(Xi =
−1) = 1/2 for all i. Then, we have

X1 + · · ·+Xn

n
→ 0 a.s.

Proof. As discussed earlier, the desired result is equivalent to showing that

P
[∣∣∣∣X1 + · · ·+Xn

n

∣∣∣∣ ≥ 1

k
i.o.

]
= 0

and
P
[
|X1 + · · ·+Xn| ≥

n

k
i.o.
]
= 0.

Using the Borel-Cantelli Lemma, we just need to show
∑∞

n=1 P(|
∑

Xi| ≥ n/k) < ∞. Using the
Bernstein inequality, we have

P(
∣∣∣∑Xi

∣∣∣ ≥ n/k) ≤ 2 exp

[
−n2/k2

2n

]
= 2 exp

[
− n

2k2

]
.
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So, we get

∞∑
n=1

P(
∣∣∣∑Xi

∣∣∣ ≥ n/k) =

∞∑
n=1

2 exp
[
− n

2k2

]
= 2

∞∑
n=1

[
exp[−1/(2k2)]

]n
< ∞

as the exponential is between 0 and 1. This yields the desired result.

2.6 Tail Events and Kolmogorov 0-1 Law

Definition 2.15. Let {Xn} be a sequence of random variables. τn = σ(Xn+1, Xn+2, . . .) is the
n-th tail σ-algebra of {Xn}. τ := ∩∞

n=1τn is the tail σ-algebra of {Xn}. An event is a tail
event if E ∈ τ .

The intuition behind this definition is as follows. σ(X) = {{X ∈ B} | B ∈ B}, which contains all
events that depend on X. So, τn contains events which are defined by Xn+1, Xn+2, . . . only, or
events that do not depend on X1, . . . , Xn. Extrapolating this intuition, we have that τ contains
events which are determined by the tail of {Xn}, or events that do not depend on any finite
number of Xn.

Example. E = {Xn → a}.

If this is a tail event, then it means it belongs to the intersection of τm so it must be contained
in any τm. To see this, for any m, we have

{Xn → a} = {Xn+m → a} =

∞⋂
k=1

∞⋃
N=1

⋂
n≥N

{|Xm+n−a| <
1

k
} ∈ τm.

So this is indeed a tail event.

Example. {limn→∞ Xn exists} ∈ τ .

Example. {
∑∞

n=1 Xn < ∞} ∈ τ .

Example. {
∑∞

n=1 Xn > 0} /∈ τ .

Example. {limn→∞[X1 + · · ·+Xn]/n exists} ∈ τ .

To see this, notice that [X1 + · · ·+Xn]/n = [X1 + · · ·+Xm]/n+ [Xm+1 + · · ·+Xn]/n and the
first term on the right goes to zero as n → ∞. So any finite term will not matter.

Example. {supn∈N Xn > 0} /∈ τ .

Assume that it is a tail event and find a counter-example.

Consider the sequence of random variables such that X1 takes 0 and 2 each with probability
1/2, and Xn = 0 for all n ≥ 2. Then, E := {supn∈N Xn > 0} = {X1 = 2} and P(E) = 1/2.
Furthermore, τn = {∅,Ω} for all n ≥ 2 so τ = {∅,Ω}. Clearly, P(∅) = 0 and P(Ω) = 1, and
neither is P(E) = 1/2. So, this is not a tail event.

Example. {
lim sup

1

n

n∑
i=1

Xi > 0

}
is a tail event.
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Notice that we have, for any m,

lim sup
1

n

n∑
i=1

Xi = lim sup
1

n

n∑
i=m+1

Xi

as the limit of the first finite many m terms go to zero by the 1/n factor.

Example. {
lim

1

n

n∑
i=1

Xi > 0 i.o.

}
is not a tail event.

For example, if we consider i.i.d. X1 ∼ Ber(1/2) and Xn = 0 for n ≥ 2, then the above event
depends exactly on the behaviour of the first term.

Theorem 2.16 (Kolmogorov 0-1 Law). If {Xn} are independent, then every tail event has a
probability of 0 or 1.

Proof. We will show that τ is independent of τ (which is only possible when τ is trivial). This
then imply, for all E ∈ τ , we have P(E ∩ E) = P(E)P(E) =⇒ P(E) = P(E)2 =⇒ P(E) = 0, 1,
as desired.

Let σn := σ(X1, X2, . . . , Xn). Recall τn := σ(Xn+1, Xn+2, . . .).

The proof will be in steps.

(a) σn ⊥ τn.

We have two π-systems,

{{X1 ∈ B1, . . . , Xn ∈ Bn}, B1, . . . , Bn ∈ B}

that generates σn and

{{Xn+1 ∈ Bn+1, . . . , Xn+m ∈ Bn+m}, Bn+1, . . . , Bn+m ∈ B}

that generates τn. Clearly, they are independent, so by Theorem 2.3, they are indeed independent.

(b) Since τ ⊂ τn, we have σn ⊥ τ .

(c) Let σ∞ := σ(X1, X2, . . .). Then, σ∞ ⊥ τ .

σ∞ is generated by π-system σ1∪σ2∪· · · . First, this is indeed a π-system. For A,B ∈ σ1∪σ2∪· · · ,
we have A ∈ σm and B ∈ σn. Since σks are increasing, we have A,B ∈ σmax{m,n} and also
A ∩B ∈ σmax{m,n}. So, we have A,B ∈ σ1 ∪ σ2 ∪ · · · . Second, σ1 ∪ σ2 ∪ · · · ⊥ τ . This is true as
σn ⊥ τ for all n. Thus, σ∞ ⊥ τ .

(d) τ ⊂ σ∞.

Thus, τ ⊥ τ .
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At this point, we should go back to one of the result we showed earlier again. We said that for
i.i.d. exponential random variables Xn with mean 1, we have

lim sup
Xn

log n
= 1.

We assumed that this limsup is a constant a.s. but it could be verified now using Kolmogorov’s
0-1 law.

Let F be the distribution function of lim supXn. Then F (x) = P(lim supXn ≤ x). The event
{lim supXn ≤ x} is a tail event so its probability is either 0 or 1. Hence F can only take values
0 and 1 - which is only possible if the underlying random variable is a constant.
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Chapter 3

Weak Convergence

3.1 Basics of Weak Convergence

Let {Xn}, X be random variables, and they do not have to be on the same probability space.
Respectively, let µn, µ be their laws and let Fn, F be their distribution functions.

Definition 3.1. Xn converges to X weakly / in distribution / in law, or µn → µ weakly,
if Fn(t) → F (t) for every t ∈ R where F is continuous. We will denote this by Xn =⇒ X, or

Xn
d−→ X, Xn

w−→ X.

Theorem 3.2 (WLLN for square-integrable random variables). Let {Xn} be i.i.d. random
variables with mean µ and finite variance. Then,

X1 + · · ·+Xn

n
=⇒ µ.

Proof. WLOG we let µ to be zero. Also, we denote Sn := X1 + · · ·+Xn.

Note that for some variable Y to have P(Y = 0) = 1, it must have distribution function

FY (y) =

{
1 y ≥ 0

0 y < 0.

So, in this case, for any ε > 0, we need FSn/n(ε) → 1 and FSn/n(−ε) → 0 as n → 0. Essentially,
we just need P(|Sn/n| > ε) → 0 as n → 0.

Using Markov inequality, we have

P(|Sn/n| > ε) = P((Sn/n)
2 > ε2)

= P(S2
n > n2ε2)

≤ n−2ε−2E[S2
n]

= n−2ε−2E[
∑
n

X2
n] as Xn are independent

=
nVar(X1)

n2ε2
=

Var(X1)

nε2
→ 0.
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Theorem 3.3 (Relation Between Weak and Almost Surely Convergence). We have

1. If Xn → X a.s., then Xn → X weakly.
2. If µn → µ weakly, then there are {Xn}, X defined on the same probability space such that

their laws are {µn}, µ, and Xn → X a.s.

Theorem 3.4 (Equivalent Definition of Weak Convergence 1). µn → µ weakly ⇐⇒
∫
R h dµn →∫

R h dµ for all continuous and bounded function h : R → R.

Proofs of the two theorems above will be combined, as they are intertwined.

Proof. We will first prove Theorem 3.3 (2).

We will use the Skorokhod’s construction (see Theorem 1.5) to construct the random variables
Xn and X. Let ([0, 1),B, Leb) be the probability space, and we define random variables

Xn(ω) := inf{t : Fn(t) > ω}

and
X(ω) := inf{t : F (t) > ω}

where Fn and F are the distribution functions from the laws µn and µ.

Let B := {ω ∈ [0, 1) : F (x) = F (y) = ω for some x ̸= y}. This defines the set of constant pieces
of F . We will show in a bit that B has Lebesgue measure zero (and in fact it is a countable set),
so we will disregard them in checking the strong convergence of Xn to X.

For each ω ∈ B, we will associate it with an interval [x, y] such that F (x) = F (y) = ω. This
is a bijection. Furthermore, the intervals for two different ω are trivially disjoint. Notice that
each interval contains a rational number, and the set of rational numbers is countable, so we
have at most countable such intervals, and therefore B is at most countable. This implies that
Leb(B) = 0.

Consider the set of discontinuities of F . Using a similar argument, we can establish that there
are at most countable discontinuities. For each discontinuity t ∈ R, we can associate it with
interval [v, u] such that limx→t− F (x) ≤ v < u ≤ limx→t+F (x). Those vertical intervals are
disjoint, and each contains a rational number, so there could only be at most countable many of
them - thus there are at most countable discontinuities.

Let ω ∈ [0, 1)\B, and consider some ε > 0 with 0 < δ ≤ ε such that for x = X(ω), we have x− δ
and x+ δ both being continuity points of F . This is possible since there are at most countable
discontinuity points of F , as established just now. So, we have

F (x− δ) < ω < F (x+ δ)

with Fn(x− δ) → F (x− δ) and Fn(x+ δ) → F (x+ δ) by the given weak convergence µn =⇒ µ.
Some more, as we ω /∈ B, we can find sufficiently large N such that for all n ≥ N , we have
Fn(x− δ) < ω < Fn(x+ δ).

As a consequence of the above inequality, we have x− δ < Xn(ω) < x+ δ, which yields

|X(ω)−Xn(ω)| < δ

for all n ≥ N , as required for Xn → X a.s..

We will then prove the forward direction of Theorem 3.4.
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As proven just now, given µn =⇒ µ, we can construct random variables Xn and X such that
Xn → X a.s. Next, notice that the desired convergence is

E[h(Xn)] =

∫
hdµn →

∫
hdµ = E[h(X)].

Since h is continuous, we have Xn → X a.s. =⇒ h(Xn) → X a.s.. In addition, h is bounded
so h(Xn) is bounded. Therefore, we apply the dominated convergence theorem and get

E[h(Xn)] → E[h(X)] a.s.

as desired.

Next, we will prove the backward direction of the same theorem.

Showing µn =⇒ µ is the same as showing Fn(x) → F (x) for all continuous point x. Notice that

Fn(x) =

∫
1(−∞,x]dµn

and

F (x) =

∫
1(−∞,x]dµ.

We would be tempted to draw the convergence using the condition of the theorem
∫
R h dµn →∫

R h dµ for h = 1(−∞,x]. However, this is not valid as h is bounded but not continuous. We could
remedy this argument by trying to make the indicator function continuous, and that is what we
will do.

Consider a continuity point x of F . The desired convergence is limn Fn(x) = F (x), and this is
implied by

F (x) ≤ lim inf Fn(x) ≤ lim supFn(x) ≤ F (x).

The middle inequality is trivial, and we just need to show the first and last inequalities.

First we show F (x) ≤ lim inf Fn(x). For some δ > 0, consider h(t) that takes 1 for t ≤ x − δ,
takes 0 for t ≥ x, and something between 0 and 1 for x − δ ≤ t ≤ x that makes h continuous.
Clearly, we have

lim inf Fn(x) = lim inf

∫
1(−∞,x]dµn ≥ lim inf

∫
hdµn =

∫
hdµ ≥

∫
1(−∞,x−δ]dµ = F (x− δ).

As this δ is arbitrary, we can take it to zero and get the desired

lim inf Fn(x) ≥ F (x).

The other inequality is similar. We just need to consider h(t) that takes 1 for t ≤ x, takes 0 for
t ≥ x + δ, and something between 0 and 1 for x ≤ t ≤ x + δ that makes h continuous for any
δ > 0. The rest is almost identical, and we would have

lim supFn(x) ≤ F (x).

Done.

Finally, we will prove Theorem 3.3 (1).

28



Using the backward direction of Theorem 3.4, we could get µn → µ weakly if we have
∫
R h dµn →∫

R h dµ for all continuous and bounded function h : R → R, and that implies the desired weak
convergence Xn =⇒ X using Theorem 3.3 (2).

We want

E[h(Xn)] =

∫
R
h dµn →

∫
R
h dµ = E[h(X)].

Since Xn → X a.s., we have h(Xn) → h(X) a.s. by the continuity of h, and h(Xn) is bounded by
the boundedness of h. So, the desired convergence is established using the dominated convergence
theorem.

Definition 3.5. h : R → R is a C2-test function if it is compactly supported, twice differen-
tiable, and h′′ is continuous.

Theorem 3.6 (Equivalent Definition of Weak Convergence 2). µn → µ weakly ⇐⇒
∫
R h dµn →∫

R h dµ for all C2-test function h : R → R.

Definition 3.7. {µn} is tight if for all ε > 0, there exists M such that µn([−M,M ]) ≥ 1 − ε
for all n.

Example. Any finite collection is tight.

Example. µn = δn. Not tight. For some ε and correspondingM , we can findmuM+1[−M,M ] =
0 that breaks the condition.

Example. µn ∼ N(an, 1). Tight if and only if {an} is bounded.

Example. µn ∼ N(0, σ2
n). Tight if and only if {σ2

n} is bounded.

Lemma 3.8.
∫
R h dµn →

∫
R h dµ for all C2-test function h : R → R implies that {µn} is tight.

Proof. Let ε > 0. Choose M1 such that µ[−M1,M1] ≥ 1 − ε/2. Consider a C2 test function h
that takes 1 on [−M1,M1], takes 0 outside (−1−M1, 1 +M1), and something between 0 and 1
otherwise so that h is indeed a C2 test function.

Next, we have

µn[−M1,M1] =

∫
1[−M1,M1]dµn

≥ hdµn →
∫

hdµ for large enough n

≥
∫

hdµ− ε

2

≥ µ[−M1,M1]−
ε

2
≥ 1− ε.

The tightness requires M for all n. We have so far shown that for M1 and large enough n. There
are only finitely many n that M1 might not be large enough. So, we pick finitely many Mk and
pick the maximum out of them, and that will settle the proof.

Now, let us prove Theorem 3.6.
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Proof. The forward direction is trivially true as a consequence of Theorem 3.4 since any h that is
a C2 test function is obviously continuous and bounded. So we just need to show the backward
direction.

We know from the previous lemma that {µn} is tight. Let x be a continuity point of F , and let
δ > 0, ε > 0. For ε, we can pick M such that µn[−M,M ] ≥ 1−ε for all n, and µ[−M,M ] ≥ 1−ε.

The desired convergence can be implied by

F (x) ≤ lim inf Fn(x) ≤ lim supFn(x) ≤ F (x).

Just like our proof for the backward direction of Theorem 3.4, we will consider some suitable h
to make the whole inequalities hold.

First, we show F (x) ≤ lim inf Fn(x). Consider h that takes 1 on [−M,x − δ], takes 0 from x
onwards and before −M − 1, and takes something between 0 and 1 otherwise to make sure h is
indeed a C2 test function.

We have Fn(x) = Mn(−∞, x] =
∫
1(−∞,x]dµn ≥

∫
hdµn. Then,

lim inf Fn(x) ≥ lim inf

∫
hdµn =

∫
R
hdµ

≥ 1[−M,x−δ]dµ = F (x− δ)− µ(−∞,−M ]

≥ F (x− δ)− ε.

As δ, ε are arbitrary, we take them to zero and have lim inf Fn(x) ≥ F (x). The other inequality is
similar. Just consider a C2 test function h that takes 0 on [−M,x], takes 1 outside (−M−1, x+δ),
and something nice in between. The rest follows similarly. Done.

3.2 Characteristic Functions

Definition 3.9. We have

1. φ(t) = E[eitX ], φ : R → C is the characteristic function of random variable X.
2. µ̂(t) =

∫
eitxdµ(x), µ̂ : R → C is the Fourier transform of law µ.

3. f̂(t) =
∫
eitxf(x)dx, f̂ : R → C is the Fourier transform of integrable function f : R →

R.

Theorem 3.10 (Properties of Characteristic Functions). For a characteristic function ϕ, we
have

1. φ(0) = 1.
2. φλX(t) = φX(λt).
3. If X,Y are independent, then

φX+Y (t) = φX(t)ϕY (t).

4. φ is continuous.

Proof. The first result follows from the definition of φ. The second result is obtained by seeing

φλX(t) = E[eitλX ] = φX(λt).
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The third result follows from

φX+Y (t) = E[eitλ(X+Y )] = E[eitλX ]E[eitλY ] = φX(t)φY (t),

where the second last equality follows from the independence of X and Y . The last result is true
by considering any tn → t, and we have

φ(tn) = Eeitnx → Eeitx = φ(t)

by the continuity of exponential and expectation.

Example. For a random variable X that takes a constant value c with probability 1, we have

φX(t) = E[eitX ] = eitc.

Example. For a random variable X that takes ±1 each with probability 1/2, we have

φX(t) = E[eitX ] =
1

2
eit +

1

2
e−it = cos t.

Example. Consider X ∼ Unif [−1, 1]. We have

φX(t) = E[eitX ] =

∫ 1

−1

1

2
eitxdx =

1

2it
(eit − e−it) =

sin t

t

for t ̸= 0. For t = 0, we have φ(0) = 1 and the continuity of ϕ is maintained.

Example. For Cauchy random variable X with pdf f(x) = 1/[π(1 + x2)], it has infinite expec-
tation. Additionally, it can be derived using some complex analysis that

φ(t) = e−t|x|.

This function is not differentiable. We have this observation that if for some random variable X
we have E[|X|m] < ∞, then ϕ will be m-times differentiable.

Example. For X ∼ N(0, 1), we have

φ(t) = e−t2/2

using complex analysis.

Theorem 3.11 (Decay and Integrability of Fourier Transform). We have

1. For h : R → R, if we have
• h is m-times differentiable and h(m) is continuous,
• h(i) is integrable for 0 ≤ i ≤ m,
• h(i)(x) → 0 as x → ∞ for all 0 ≤ i ≤ m− 1,

then there exits some c such that |ĥ(t) ≤ C/tm for all non-zero t.

2. Let h be a C2 test function, then there some c such that |ĥ(t) ≤ C/t2 for all non-zero t.

Proof. The second part of this theorem is a direct consequence of the first part after noticing
that m = 2 for a C2 test function.
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Using integration by parts, we have

ĥ(t) =

∫
R
eitxh(x)dx

=

[
h(x)eitx

it

]
R
− 1

it

∫
R
h′(x)eitxdx

= − 1

it

∫
R
h′(x)eitxdx

as h decays to zero for large |x|. We can keep doing this integration by parts m− 1 more times,
and that will give us

ĥ(t) =
(−1)m

(it)m

∫
R
h(m)(x)eitxdx,

which implies

|ĥ(t)| =
∣∣∣∣ (−1)m

(it)m

∫
R
h(m)(x)eitxdx

∣∣∣∣ ≤ 1

tm

∫
|h(m)(x)eitx|dx =

c

tm

for some constant c and t ̸= 0.

Theorem 3.12 (Parseval-Plancherel Theorem). Let µ be a probability measure on (R,Ω) with
Fourier transform φ. Then, for any C2 test function, we have∫

R
hdµ =

1

2π

∫ ∞

−∞
ĥ(t)φ(t)dt.

Proof. The expression on the RHS is integrable since |φ| < 1 and |ĥ| ≤ c/t2 as we have just
established in Theorem 3.11. So, we can use Fubini and have

1

2π

∫ ∞

−∞
ĥ(t)φ(t)dt =

1

2π
lim

T→∞

∫ T

−T

ĥ(t)φ(t)dt

=
1

2π
lim

T→∞

∫ T

−T

∫ ∞

−∞
e−itxh(x)dx

∫
R

∫
eitydµ(y)dt

=
1

2π
lim

T→∞

∫
R

∫ ∞

−∞
h(x)

∫ T

−T

eit(y−x)dtdxdµ(y)

= lim
T→∞

∫
R

1

π

∫ ∞

−∞
h(x)

sin(T (x− y))

x− y
dxdµ(y).

We will denote hT (y) := 1
π

∫∞
−∞ h(x) sin(T (x−y))

x−y dx.

In order to show the desired result∫
R
hdµ = lim

T→∞

∫
R
hT (y)dµ,

we need two things: (1) hT (y) → h(y) as T → ∞, and (2) hT are uniformly bounded by
an integrable function. If we have these things, then a simple application of the dominated
convergence theorem will yield the desired equation.
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We will write hT = hT
− + hT

+, where we have

hT
−(y) :=

1

π

∫ y

−∞
h(x)

sin(T (x− y))

x− y
dx

hT
+(y) :=

1

π

∫ ∞

y

h(x)
sin(T (x− y))

x− y
dx.

We just need to show hT
+(y) → h(y)/2. The other convergence can be established similarly. By

integration by parts, we have

hT
+(y) =

1

π

∫ ∞

y

h(x)
sin(T (x− y))

x− y

=
1

π

(
h(x)

∫ x

y

sin(T (u− y))

u− y
du|∞x=y −

∫ ∞

y

h′(x)intxy
sin(T (u− y))

u− y
dudx

)
= − 1

π

∫ ∞

y

h′(x)

∫ T (x−y)

0

sin v

v
dvdx

where we used the substitution v = (u− y)/T .

We claim that
∫∞
0

(sin t)/tdt = π/2 and the function x 7→
∫ x

0
(sin t)/tdt is bounded by a positive

constant.

Using this claim, for each x and as T → ∞, we have the inner integral converging to π/2. So,
using dominated convergence theorem since h′ is compactly supported, we have

hT
+(y) = − 1

π

∫ ∞

y

h′(x)

∫ T (x−y)

0

sin v

v
dvdx → − 1

π

∫ ∞

y

h′(x)π/2dx = h(y)/2.

Next, we need to show hT
+ is uniformly bounded, and this can be established by our previous

remark. Done.

Theorem 3.13 (Weak Convergence = Convergence of Characteristic Functions). Let {Xn} and
X be random variables with characteristic functions (φn) and φ. Then Xn =⇒ X if and only
if φn → φ for each t ∈ R.

Proof. We will let (µn) and µ to denote the laws of {Xn} and X respectively.

We first show the forward direction. For each t, we have h(x) := eitx and this function is
continuous and bounded. By Theorem 3.4, we know that if µn =⇒ µ then

∫
hdµn →

∫
hdµ for

every continuous bounded h. So, as we have Xn =⇒ X so µn =⇒ µ, we have

φn(t) = E[eitXn ] =

∫
h(x)dµn →

∫
h(x)dµ = E[eitX ] = φ(t)

as desired.

For the backward direction, we will use Theorem 3.6, which says that µn =⇒ µ if and only if∫
hdµn →

∫
hdµ for every C2 test function h. So, we just need to show that

∫
hdµn →

∫
hdµ

for every C2 test function h.
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From Parseval-Plancherel (Theorem 3.12), we know that for any C2 test function h, we have∫
R
hdµ =

1

2π

∫ ∞

−∞
ĥ(t)φ(t)dt.

So, we have ∫
R
hdµn =

1

2π

∫ ∞

−∞
ĥ(t)φn(t)dt →

1

2π

∫ ∞

−∞
ĥ(t)φ(t)dt

∫
R
hdµ,

where the convergence holds due to dominated convergence theorem and Theorem 3.11 on the
bound of text functions. Done.

Example. Let {Xn} be i.i.d. sequence taking ±1 each with probability 1/2. We would like to
investigate the convergence of

∑∞
n=1 2

−nXn.

We let Sn :=
∑n

k=1 2
−kXk. We have

ϕSn(t) =

n∏
k=1

ϕXk
(t2−k) =

n∏
k=1

cos(t2−k).

Then,

ϕSn(t) =
1

sin(t2−n)

n∏
k=1

cos(t2−k) sin(t2−n)

=
2−1

sin(t2−n)

n−1∏
k=1

cos(t2−k) sin(t2−(n−1))

=
2−n

sin(t2−n)
sin(t)

=
sin(t)

t

t2−n

sin(t2−n)
→ sin(t)

t

which is the characteristic function for Unif[-1,1]. Thus, this series converges to Unif[-1,1] in
distribution.

So far we have obtained a series of equivalence relationships between convergences. They are
summarised in the following diagram.

Theorem 3.14 (Characteristic Functions Dictate Distributions). If random variables X and Y
have the same characteristics functions, i.e. φX = φY , then X and Y have the same distribution.
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Proof. Consider a sequence Xn = X for all n, and we have φXn = φX = φY so Xn =⇒ Y . This
means, FX(t) = FXn

(t) → FY (t) at the continuity points of FY . For t not a continuity point,
we can approximated by continuity points tn converging to t from above and have the following
by right continuity:

FX(t) = lim
n→∞

FX(tn) = lim
n→∞

FY (tn) = FY (t).

Theorem 3.15 (Properties of Characteristic Functions). Let X be such that E|X|m < ∞. Then
φ is m times differentiable, φ(m) is continuous, and

φ(k)(t) = ikE[XkeitX ]

for 0 ≤ k ≤ m. In particular, if X is square integrable, then we have

1. φ is twice differentiable and φ′′ is continuous at zero.
2. φ′(0) = iE[X].
3. φ′′(0) = −E[X2].

Proof. We will prove the first half by induction, and the second half is just a special case of the
general result.

When k = 0, we know that ϕ is continuous from the properties of a characteristic function, and
the equation follows from the definition.

Assume the results hold for some k < m, and we will show for k + 1. For small h, we have

eihX − 1

h
→ (eihX)′|h=0 = iX

and ∣∣∣∣eihX − 1

h

∣∣∣∣ =
∣∣∣∣∣ 1h
∫ hX

0

eisds

∣∣∣∣∣ ≤ |X|.

So, we have the following using the dominated convergence theorem,

φ(k)(t+ h)− φ(k)(t)

h
= ikE

[
Xkei(t+h)X −XkeitX

h

]
= ikE

[
XkeitX

eihX − 1

h

]
→ ik+1E

[
Xk+1eitX

]
which is of the desired form. The continuity can be established using dominated convergence
theorem as well by considering any tn → t.

3.3 Central Limit Theorem

Theorem 3.16 (Central Limit Theorem). If {Xn} are iid random variables with mean µ and
variable σ2, and Sn = X1 + · · ·+Xn, then we have

Sn − nµ

σ
√
n

=⇒ N(0, 1).
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Proof. WLOG, we can assume Xn have mean 0 and variance 1 since we can always standardise
them. We let their characteristic function be φ. Next, we know that the characteristic function
of Sn is φn and that of Sn/

√
n is φn(t/

√
n). As the characteristic function of N(0,1) is e−t2/2,

we just need to show φn(t/
√
n) → e−t2/2 for all t to establish the desired weak convergence.

Expand φ around 0 using Taylor series yield

φ(t) = φ(0) + φ′(0) + φ′′(ξt)t
2/2 = 1 + φ′′(ξt)t

2/2.

Here ξt is in between 0 and t. Since φ′′ is continuous at 0, we have

φ′′(ξt) = φ′′(0) + ε(t) = −1 + ε(t)

where ε(t) → 0 as t → 0. So, we have

φ(t) = 1− t2

2
+

ε(ξt)t
2

2

so

φn(t/
√
n) =

(
1− t2

2n
+

ε′′(ξt)t
2

2n

)n

→ e−t2/2

as desired.

Using a similar strategy, we can also obtain the weak law of large numbers.

Theorem 3.17 (WLLN). Let {Xn} be a sequence of i.i.d. random variables with mean µ. Then,
we have

X1 + · · ·+Xn

n
=⇒ µ.

Proof. The proof is similar to that of the CLT. WLOG, we let µ to be zero. Also, we denote
Sn := X1 + · · ·+Xn.

Note that the characteristic function of a random variable that takes 0 with probability one is
e0 = 1, so we would like to show φSn/n(t) → 1 for all t as n → ∞.

Note that from the properties of a characteristic function, we have

φSn/n(t) = φSn(t/n) = φX(t/n)n.

Consider φX(t) and do a Taylor expansion at 0, so we have

φX(t) = φ(0) + φ′(ξt)t = 1 + φ′(ξt)t

for some ξt ∈ (0, t). Next, we know that φ′ is continuous at 0 so

φ′(ξt) = φ′(0) + ε(t) = ε(t) → 0

as t → 0. So,
φSn/n(t) = φX(t/n)n = [1 + ε(t/n)t/n]n → 1n = 1

as n → ∞. Done.
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Chapter 4

Martingales

4.1 Conditional Expectation

Theorem 4.1. Let (Ω,Σ,P) be a probability space, X Be an integrable random variable, and
F ⊂ Σ be a sub-σ-algebra. Then, there exists a random variable Y such that

1. Y is F -measurable.
2. Y is integrable.
3.
∫
A
XdP =

∫
A
Y dP for all A ∈ F .

Y is unique almost surely, i.e. if Ỹ satisfies (1) - (3) then Y = Ỹ a.s. In particular, Y is denoted
by E[X | F ], and is called the conditional expectation of X given F .

The proof of this theorem requires absolutely continuous measures and the Radon-Nikodym
theorem. Consider measures Q,P , we say Q is absolutely continuous w.r.t. P , denoted by
Q << P , if P (A) = 0 =⇒ Q(A) = 0. The Radon-Nikodym theorem states that, if P and
Q are σ-finite measures, and Q << P , then there exists a measurable integrable Y such that
Q(A) =

∫
A
Y dP . In particular, Y , sometimes denoted by dQ/dP , is called theRadon-Nikodym

derivative of Q w.r.t. P .

Proof. WLOG, we assume X ≥ 0. The case of general X can be easily extended from this case,
as we have X = X+ −X−.

Consider the measure space (Ω, F ), and 2 measures on it: (1) probability measure P restricted
to F , and (2) Q with Q(A) =

∫
A
XdP. P is finite as it is a probability measure, and Q is finite

since X is integrable. Next, if we have P(A) = 0, then Q(A) =
∫
A
XdP = 0. So, Q << P .

Therefore, using the Radon-Nikodym theorem, there exists a measurable, integrable Y such that
Q has density Y w.r.t. P.

Then, Q(A) =
∫
A
XdP =

∫
A
Y dP for all A ∈ F , so we have∫

A

XdP =

∫
A

Y dP

for all A ∈ F , as desired. This has demonstrated the existence.
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Suppose there exists Ỹ satisfying (1) - (3) and P(Ỹ ̸= Y ) > 0. Notice that {Ỹ ̸= Y } =
∪∞
n=1{Y − Ỹ > 1/n} ∪ ∪∞

n=1{Y − Ỹ < −1/n}. So, we have

0 =

∫
A

Y dP−
∫
A

Ỹ dP =

∫
A

Y − Ỹ dP ≥ 1

n
P(A) > 0

where A = {Y − Ỹ > 1/n} for some n. This is a contradiction. Thus, we have established
uniqueness too.

Theorem 4.2 (Properties of Conditional Expectation). We have

1. E[X] = E[E[X|F ]].
2. If X is F -measurable, then E[X|F ] = X.
3. (Linearity) E[a1X1 + a2X2 | F ] = a1E[X1|F ] + a2E[X2|F ].
4. (Positivity) If X ≥ 0 a.s., then E[X|F ] ≥ 0 for all F ⊂ Σ.
5. (Conditional Monotone Convergence Theorem) If 0 ≤ Xn ↗ X, then 0 ≤ E[Xn|F ] ↗

E[X|F ].
6. (Taking Out What’s Known) If Z is F -measurable, then E[ZX|F ] = ZE[X|F ].
7. (Independence) If Z is independent of F , then E[Z|F ] = E[Z].
8. (Tower Property) Consider σ-algebras G ⊂ F ⊂ Σ, then E[E[X|F ]|G] = E[X|G].
9. (Conditional Jensen) For convex φ, E[φ(X)|F ] ≥ φ(E[X|F ]).

Example. Consider a sequence of iid {Xn} with mean µ. We have

E[X1 + · · ·+Xn | σ(X1, . . . , Xm)]

= E[X1 + · · ·+Xm | σ(X1, . . . , Xm)] + E[Xm+1 + · · ·+Xn | σ(X1, . . . , Xm)]

= X1 + · · ·+Xm + µ(n−m).

Example. Consider a random variable X that takes p1 with probability q and takes p2 with
probability 1 − q. Both p1 and p2 are in between 0 and 1. Next, we have a random variable Y
that is a Bernoulli random variable with parameter X. So, we have Y = Y11{X=p1}+Y21{X=p2},
where Y1 is Bernoulli(p1) and Y2 is Bernoulli(p2). We have

E[Y |σ(X)]

= E[Y11{X=p1} | σ(X)] + E[Y21{X=p2} | σ(X)]

= 1{X=p1}E[Y1] + 1{X=p2}E[Y2]

= p11{X=p1} + p21{X=p2}

= X.

4.2 Martingales

Definition 4.3. A filtration on (Ω,Σ,P) is a growing sequence of σ-algebras F0 ⊆ F1 ⊆ · · · ⊂ Σ.
If {Xn} is a stochastic process, then σ(X0) ⊆ σ(X0, X1) ⊆ · · · ⊂ Σ is called the natural
filtration of {Xn}.

A stochastic process {Xn} is said to be adapted to filtration {Fn} if Xn is Fn-measurable for
all n.

Definition 4.4. {Xn} is a martingale with regards to the filtration {Fn} if we have

1. {Xn} is adapted to Fn.
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2. E[|Xn|] < ∞ for all n.
3. E[Xn+1|Fn] = Xn for all n.

A submartingale is a martingale but with E[Xn+1|Fn] ≥ Xn instead. A supermartingale is
a martingale but with E[Xn+1|Fn] ≤ Xn instead.

Remark. A submartingale can be transformed into a supermartingale (and vice versa) by adding
a minus sign to each random variable. As a result, we would only consider either submartingales
or supermartingales.

Remark. A martingale (in real life) is a tool to make sure a horse is staying in its lane properly.
Here, the random variables of a martingale stay the same in expectation at each step, which is
why it is given this name.

Proposition 4.5. For a martingale {Xn}, we have

1. E[Xn|Fn] = Xm for all m < n.
2. E[Xn] = E[X0] for all n.

Proof. The first result relies on the tower property of conditional expectations, while the second
result relies on the iterated expectation.

Example. Consider {Xn} with

Xn =

n∑
i=1

Yiεi

with filtration {Fn} and Fn = σ(ε0, ε1, . . . , εn). Here, {εi} is an iid Bernoulli(1/2) sequence and
{Yi} is a random sequence with each Yn being Fn−1 measurable.

In this case, we have

E[Xn+1|Fn] =

n∑
i=1

Yiεi + E[Yn+1εn+1|Fn]

= Xn + Yn+1E[εn+1]

= Xn.

4.3 Stopping Time

Definition 4.6. T : Ω → N ∪ {+∞} is called a stopping time if {T = n} ∈ Fn for all n ∈ N.
Here {Fn} is a filtration.

Proposition 4.7. For stopping times S, T with respect to the same filtration (Fn),

1. S + T is a stopping time.
2. S − T is not a stopping time.
3. ST is a stopping time.

Proof. A stopping time K must satisfy {K = k} ∈ Fk for all k.

We notice that

{S + T = k} =

k⋃
q=0

{S = q, T = k − q} =

k⋃
q=0

[{S = q} ∩ {T = k − q}] ∈ Fk
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since both {S = q} and {T = k − q} are in Fk. Thus, S + T is a stopping time.

Using the same logic, we can notice that S − T is not a stopping time. Say T = 1, and
S − T = k ⇐⇒ S = k + 1 which is not in Fk.

Similarly, we have

{ST = k} =
⋃
q

{S = q, T = k/q} =
⋃
q

[{S = q} ∩ {T = k/q}] ∈ Fk

since both {S = q} and {T = k/q} are in Fk.

For a martingale {Xn} with filtration {Fn} and stopping time T , XT is known as the stopped
random variable, while {Xn∧T } is a stopped process. A stopped random process will behave like
the original martingale until the stopping time, and stay at XT from T onwards.

Theorem 4.8. If {Xn} is a martingale with regards to filtration {Fn}, and T is a stopping time
then the stopped process {Xn∧T } is a martingale as well.

Theorem 4.9 (Optimal Stopping Theorem, OST). If {Xn} is a martingale with regards to
filtration {Fn} and T is a stopping time that is finite a.s., then E[XT ] = E[X0] in each of the
following 3 situations

1. T is bounded a.s.
2. E[T ] < ∞ and (Xn) has a.s. bounded increments.
3. {Xn} is bounded a.s.

Proof. We have Xn∧T → XT a.s. as n → ∞, and if we can satisfy the condition of the dominated
convergence theorem, then we would have

E[Xn∧T ] → E[XT ].

Since (Xn∧T ) is a martingale, we have E[Xn∧T ] = E[X0] which is a constant, so we would have
the desired E[XT ] = E[X0] as a result of the convergence. So, we just need to make sure in each
of the three situations we have satisfied the conditions of the dominated convergence theorem.

(2) Notice that {Xn} has bounded increments, so let the increment be bounded by c. Then, we
have

|Xn∧T −X0| ≤
n∧T∑
i=0

|Xi+1 −Xi| ≤ c(n ∧ T + 1) ≤ c(T + 1)

and we have E[T ] < ∞. This satisfied the desired conditions.

(3) Since {Xn} is bounded, we have |Xn∧T | ≤ |Xn| which is bounded as well. Done.

(1) We would not use dominated convergence to establish the desired result in this case. Since
we have T ≤ N for some N , for all n ≥ N , we have Xn∧T = XT , so E[Xn∧T ] = E[XT ], which
establish the desired convergence.

Remark. It is not hard to notice that the proof would still work if we have {Xn∧T } instead of
{Xn} for situations 2 and 3. This in fact gives a stronger result.

40



4.4 Strong Law of Large Number

Theorem 4.10 (Doob’s Submartingale Inequality). Let {Xn} be a non-negative submartingale.
Then cP(max0≤n≤N Xn ≥ c) ≤ E[XN ].

Proof. Let T := inf{n : Xn ≥ c}∧N . Clearly, T ≤ N . If we have T ≤ N =⇒ E(XT ) ≤ E(XN ),
then we would also have E(XT 1E) ≤ E(XN1E) ≤ E(XN ) where E = {max0≤n≤N Xn ≥ c} as

E(XT ) = E(XT 1E) + E(XT 1Ec) ≤ E(XN1E) + E(XN1Ec) = E(XN ).

This gives us cP(E) ≤ E(XT 1E) ≤ E(XN ) as required.

Now we just need to show T ≤ N =⇒ E(XT ) ≤ E(XN ).

We have

E(XT ) = E

[
N∑
i=0

XT 1T=i

]
=

N∑
i=0

E [XT 1T=i] =

N∑
i=0

E [Xi1T=i]

=

N∑
i=0

∫
T=i

XidP ≤
N∑
i=0

∫
T=i

E(XN |Fi)dP =

N∑
i=0

∫
T=i

XNdP

=

N∑
i=0

E[XN1T=i] = E[XN ]

N∑
i=0

E[1T=i] = E[XN ]

N∑
i=0

P[T = i] = E[XN ].

Lemma 4.11 (Kolmogorov Inequality). Let {Xn} be independent, square integrable, mean 0
random variables. Then

c2P

(
max

1≤n≤N

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ c

)
≤

N∑
i=1

E[X2
i ].

This is a direct consequence of the Doob’s submartingale inequality.

Theorem 4.12 (Kolmogorov Theorem). Let {Xn} be independent, square integrable, mean 0
random variables. If

∑∞
n=1 E(X2

n) < ∞, then
∑∞

n=1 Xn < ∞ a.s.

Before proving this result, let us first look at an example.

Example. We know that
∑

1/n = ∞ and
∑

(−1)n/n < ∞ from Analysis. If we have
∑

εn/n
with εn be i.i.d. random variables taking ±1 with equal probability, then we know that

E
[εn
n

]
= 0,

∑
E
[
ε2n
n2

]
=
∑ 1

n2
< ∞,

so we know
∑

εn/n < ∞ by Kolmogorov Theorem above. Furthermore, by staring at the
derivation above, we have

∑
εn/n

α < ∞ for all α > 1/2.

Now, let us prove the theorem.
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Proof. Notice that
∑∞

n=1 Xn < ∞ is equivalent to say that the sequence of partial sums con-
verges, and thus the sequence is a Cauchy sequence. So, by the definition of a Cauchy sequence,
we would like to show

P

(
∀ε, ∃N s.t.∀n > N,

∣∣∣∣∣
n∑

i=N+1

Xi

∣∣∣∣∣ < ε

)
= 1.

This is equivalent as

P

( ∞⋂
k=1

∞⋃
N=1

⋂
n>N

{∣∣∣∣∣
n∑

i=N+1

Xi

∣∣∣∣∣ < 1

k

})
= 1

P

( ∞⋃
N=1

⋂
n>N

{∣∣∣∣∣
n∑

i=N+1

Xi

∣∣∣∣∣ < 1

k

})
= 1 for each k

P

( ∞⋃
N=1

∞⋃
n=N+1

{∣∣∣∣∣
n∑

i=N+1

Xi

∣∣∣∣∣ ≥ 1

k

})
= 0 for each k.

Now, using the Kolmogorov inequality, we have

P

(
M⋃

n=N+1

{∣∣∣∣∣
n∑

i=N+1

Xi

∣∣∣∣∣ ≥ 1

k

})
= P

(
max

N+1≤n≤M

∣∣∣∣∣
n∑

i=N+1

Xi

∣∣∣∣∣ ≥ 1

k

)
≤ k2

M∑
n=N+1

E[X2
n].

Taking the limit of M → ∞ gives us

P

( ∞⋃
n=N+1

{∣∣∣∣∣
n∑

i=N+1

Xi

∣∣∣∣∣ ≥ 1

k

})
≤ k2

∞∑
n=N+1

E[X2
n].

So, we have

P

( ∞⋃
N=1

∞⋃
n=N+1

{∣∣∣∣∣
n∑

i=N+1

Xi

∣∣∣∣∣ ≥ 1

k

})
≤ lim

N→∞
P

( ∞⋃
n=N+1

{∣∣∣∣∣
n∑

i=N+1

Xi

∣∣∣∣∣ ≥ 1

k

})

≤ lim
N→∞

k2
∞∑

n=N+1

E[X2
n] = 0

since
∑∞

n=1 E[X2
n] < ∞.

Next, we can prove the strong law of large number for square integrable random variables. But
first, let us have some auxiliary lemmas.

Lemma 4.13 (Cesaro). If an → a, then (a1 + · · ·+ an)/n → a.

Proof. As we have an → a, for ε > 0, we have N such that for all n > N , |an − a| < ε. Then,
we have ∣∣∣∣ 1n (a1 + · · ·+ an)− a

∣∣∣∣ ≤ ∣∣∣∣a1 + · · ·+ aM
n

− M

n
a

∣∣∣∣+ n−M

n
ε < ε

for sufficiently large M and n > M .

Lemma 4.14 (Kronecker). If
∑∞

n=1 an/n < ∞, then (a1 + · · ·+ an)/n → 0.
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Proof. Denote u0 = 0, un =
∑n

i=1 ai/i and u =
∑∞

i=1 ai/i. We have un → u, and an =
n(un − un−1). So,

a1 + ·+ an
n

=
1

n
(u1 − u2 + 2(u2 − u3) + · · ·+ n(un − un−1))

=
1

n
(nun − u0 − u1 − · · · − un−1)

= un − u0 + u1 + · · ·+ un−1

n
→ u− u = 0.

Let us prove the SLLN for square integrable random variables.

Theorem 4.15 (SLLN for square integrable random variables). Let {Xi} be i.i.d. square inte-
grable random variables with mean 0. Then,

X1 +X2 + · · ·+Xn

n
→ 0 a.s.

Proof. Let Yn = Xnn. Then,

∞∑
n=1

E[Y 2
n ] = E[X2

1 ]

∞∑
n=1

1

n2
< ∞.

Using Kolmogorov’s Theorem, we have
∑∞

n=1 Yn < ∞ a.s., so
∑∞

n=1 Xn/n < ∞ a.s.. Then we
can use the Kronecker lemma to complete the proof.

If we would like to remove the square integrability condition, we need to have a modified sequence
that is close enough to the original sequence and consists of square integrable random variables.
We would need another result in order to do so.

Theorem 4.16 (Kolmogorov Truncation Lemma (TL)). Let {Xn} be i.i.d. integrable random
variables with E[Xn] = µ. Define the truncated random variables Yn = Xn1{|Xn|≤n}. Then,

1. P(Xn = Yn eventually) = P(∃N ∀n ≥ N Xn = Yn) = 1.
2. E[Yn] → µ.
3.
∑∞

n=1 Var(Yn)/n
2 < ∞.

Proof. (1) We want P(Xn ̸= Yn i.o.) = 0, which is P(|Xn| > n i.o.) = 0. This follows from
Borel-Cantelli 1 as we have

∞∑
n=1

P(|Xn| > n) =

∞∑
n=1

P(|X1| > n) =

∞∑
n=1

E[1{|X1|>n}] = E

[ ∞∑
n=1

1{|X1|>n}

]
≤ E[|X1|] < ∞

where the last equality is because of the monotone convergence theorem.

(2) We have
E[Yn] = E[Xn1{|Xn|≤n}] = E[X11{|X1|≤n}] → E[X1] = µ.

where the convergence is due to dominated convergence theorem.
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(3) We have

∞∑
n=1

E[Y 2
n ]

n2
=

∞∑
n=1

E[X2
11{|X1|≤n}]

n2
= E

[ ∞∑
n=1

X2
11{|X1|≤n}

n2

]
= E

X2
1

∞∑
n≥|X1|

1

n2

 .

Note that we have
∞∑

n≥m

1

n2
≤

∞∑
n≥m

2

n(n+ 1)
=

2

m

for integer m. Therefore, we will ignore the fact that |X1| does not have to be an integer (it is
only technicality for the cases when it is not) and assume that it is, and we have

∞∑
n=1

E[Y 2
n ]

n2
≤ E

[
X2

1

2

|X1|

]
= 2E[|X1|] < ∞.

Since we know E[Yn] converges, E[Yn]
2 is bounded by some c and

∞∑
n=1

E[Yn]
2

n2
≤

∞∑
n=1

c

n2
< ∞.

So we have the desired convergence.

Now, let us prove the SLLN.

Theorem 4.17 (SLLN). Let {Xn} be i.i.d. integrable random variables with E[Xi] = µ. Then,

X1 + · · ·+Xn

n
→ µ a.s.

Proof. We first defined Yn as in the case of the truncated lemma. Then, we just need to show
that

Y1 + Y2 + · · ·+ Yn

n
→ µ a.s.

by TL(1). Since TL(2) says E[Yn] → µ, we have, using Cesaro,

E[Y1] + · · ·+ E[Yn]

n
→ µ

so we just need to show that

1

n

n∑
i=1

(Yi − E[Yi]) → 0 a.s.

Notice that Yi − E[Yi] are independent with mean 0, and

∞∑
i=1

E[(Yi − E[Yi])
2]

i2
=

∞∑
i=1

Var[Yi]

i2
< ∞

by TL(3). So, the desired result follows from Kolmogorov theorem and Kronecker lemma.
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4.5 Martingale Convergence Theorem*

Theorem 4.18 (Martingale Convergence Theorem). Let {Xn} be a martingale bounded in L1.
Then, there exists a random variable X defined on the same probability space such that Xn → X
a.s.

Corollary 4.19. A non-negative martingale converges to a random variable a.s.

Proof. For a non-negative martingale {Xn}, we know that E[|Xn| = E[Xn] = E[X0] where the
last equality follows from E[Xn|Fn] = X0 and E[Xn] = E[E[Xn|Fn]] = E[X0]. So, every non-
negative martingale is bounded in L1 and thus converges a.s. by the martingale convergence
theorem.

4.6 Galton-Watson Process

In this section, we will investigate various interesting properties of the Galton-Watson process.

The Galton-Watson process was proposed to study the extinction of surnames. The same process
can be used to model other things, such as the survival of progeny of mutant genes. In this case,
we will think about this model in its original surname context.

Let {Zn}n∈N denote the stochastic process of number of males with a particular surname, and
we let Z0 := 1. So, Zn denotes the number of males with a particular surname in the n-th
generation. It is natural to assume that these random variables take values in N. To study the
process requires us to know how many (male) offspring each male has. We assume that each male
will have X offspring, where X is a random variable take takes values in N and P(X = 0) > 0.
Note that we also assume that the number of offspring for each male is independent.

To tidy up the notations, we denote Xm+1
r as the number of offspring of the r-th male of

generation m. Clearly, r takes values between 1 and Zm. Consequently, we have

Zm+1 =

Zm∑
r=1

Xm+1
r .

It is obvious that {Zn} is a Markov chain where the Markov property follows from the indepen-
dence of the number of offspring for each male. The Markov property states that condition on
the current state, the distribution of the future states is independent of past states.

Let σ(Zn) to denote the σ-algebra of the random variable Zn. We would like to know E[Zn+1|σ(Zn)].
We have

E[Zn+1|σ(Zn)] = E

[ ∞∑
i=0

Zn+11{Zn=i}|σ(Zn)

]
=

∞∑
i=0

E

[
i∑

r=1

Xn
r 1{Zn=i}|σ(Zn)

]

=

∞∑
i=0

1{Zn=i}E

[
i∑

r=1

Xn
r

]
=

∞∑
i=0

1{Zn=i}iE [X] = aZn,

where a := E[X].

Notice that when a = 1, {Zn} is a martingale. And when a > 1 and a < 1 the process is a
submartingale and a supermartingale respectively.
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Of course, if we consider the process {Zn/a
n} instead, then we would get a martingale all the

time.

Next, we would want to know how would Zn behave as n → ∞. This certainly depends on the
value of a. When a > 1, the process will grow exponentially fast (with probability 1). When
a < 1, it could be shown that the process will die out within finite number of generations. The
problem is interesting when a = 1.

There is a boring scenario for a = 1, which is when P(X = 1) = 1. In this case, Zn = 1 for all
n. Things get interesting when P(X = 1) < 1.

In this case, martingale convergence theorem tells us that Zn → Z a.s. for some random variable
Z. Since each Zn is an integer, Z is also taking integer values. We would like to know which
integer k would Z take with positive probability.

For each integer k ̸= 0, consider

{Zn → k} = {∃N, ∀n ≥ N,Zn = k} =

∞⋃
N=1

{n ≥ N,Zn = k}.

Let q(k) denotes the probability that k males producing k offspring, and this probability is
strictly less than 1. Then,

P{n ≥ N,Zn = k} = P(ZN = k) lim
M→∞

q(k)M−N = 0

so P{Zn → k} = 0. Thus, Zn → 0, and the process dies out in this case too.
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Appendix A

Measure Theory Basics

Definition A.1. For a set S, a collection Σ of subsets of S is called an σ-algebra on S if

1. ∅, S ∈ Σ
2. F ∈ Σ =⇒ FC = S\F ∈ Σ
3. {Fn}n∈N ⊂ Σ =⇒ ∪nFn ∈ Σ.

Note that the closure under countable union condition contains closures under finite union as we
can take the rest of the sequence to be empty set. If we only have closure under finite union, the
collection is an algebra.

A set X with an σ-algebra A defined on it form a pair (X,A) that is known as a measurable
space.

Definition A.2. Given a measurable space (X,A), a function µ : A → [0,∞] is a measure if
we have

1. µ(∅) = 0
2. For a sequence of disjoint sets {Ej}∞j=1 ⊂ A, we have µ(∪∞

j=1Ej) =
∑∞

j=1 µ(Ej).

A measure is finite if we also have µ(X) < ∞, and a measure is σ-finite if we also have
µ(Ej) < ∞ for all j for Ej ∈ A and X = ∪∞

j=1Ej .

A.1 Construction of Measure

In this section we look at how one could construct a measure abstractly. There is a four-step
procedure.

1. Take an semi-ring A on set X
2. Define a premeasure µ0 on A
3. Construct an outer measure µ∗ from premeasure
4. Obtain a measure by restricting the outer measure to outer measurable sets

In the following we will explain in detail this procedure.

Step 1

47



Definition A.3. A collection S ⊂ P(X)1 is a semi-ring on X if

1. ∅ ∈ S
2. A,B ∈ S =⇒ A ∩B ∈ S
3. If A,B ∈ S, then there exists finitely many disjoints D1, . . . , DN ∈ S such that A\B =

∪N
j=1Dj.

Step 2

Definition A.4. Let S be a semi-ring. A function µ0 : S → [0,∞] is called a premeasure if it
satisfies

1. µ0(∅) = 0
2. Whenever {Rj}∞j=1 ⊂ S are pairwise disjoint and satisfy ∪Rj ∈ S, then µ0(∪Rj) =∑

µ0(Rj).

Step 3

Definition A.5. For a nonempty set X, a function µ∗ : X → [0,∞] is an outer measure if it
satisfies

1. µ∗(∅) = 0
2. A ⊂ B =⇒ µ∗(A) ≤ µ∗(B)
3. µ∗(∪∞

j=1Aj) ≤
∑∞

j=1 µ
∗(Aj).

We can construct an outer measure in the following way.

Proposition A.6. Let ξ ⊂ P(X) with ∅, X ∈ ξ. Let ρ : ξ → [0,∞] be such that ρ(∅) = 0. Then,
there exists an outer measure µ∗ on X defined by,

µ∗(A) = inf


∞∑
j=1

ρ(Ej) | Ej ∈ ξ, A ⊂
∞⋃
j=1

Ej


for all A ⊂ X.

Remark. We notice that for the definition to work, we need ξ to contain a cover for every subset
A. We would call ξ as the covering class.

Proof. It is easy to see by definition that µ∗(∅) = 0 as we can have Ej = ∅.

For A ⊂ B, we know that for every sequence of Ej such that B ⊂ ∪Ej , we have A ⊂ B ⊂ ∪Ej ,
so we are taking the infimum over a larger set for µ∗(B) than for µ∗(A).

Finally, fix some ε > 0. For each Aj , let us have a sequence {Ej
k}k in ξ such that Aj ⊂ ∪kE

j
k

and
∑

k ρ(E
j
k) ≤ µ∗(Aj) + ε/2j . Then, as ∪jAj ⊂ ∪j ∪k Ej

k, we have

µ∗(∪jAj) ≤
∑
j

∑
k

ρ∗(Ej
k) ≤

∑
j

[µ∗(Aj) + ε/2j ] =
∑
j

µ∗(Aj) + ε.

Taking ε to zero gives us the desired result.

1P(X) is the power set of X.
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Notice that here we do not impose much condition on S and ρ. One of the goal of this result is
to extend the notion of distance through ρ, but the outer measure we obtain might not satisfy
this goal as we may not have µ∗ and ρ agreeing on all E ∈ ξ. Consider this example.

Example. X = R and ξ = {∅, [0, 2], [2, 4], [1, 3],R}. Let us assign the elements of ξ as follows:

ρ(∅) = 0, ρ([0, 2]) = 3, ρ([2, 4]) = 1, ρ([1, 3]) = 5, ρ(R) = ∞.

Then, we have µ∗([1, 3]) ≤ 1 + 3 = 4 as [1, 3] ⊂ [0, 2] ∪ [2, 4] yet ρ([1, 3]) = 5.

So, more conditions need to be imposed and we have the following result. Before we do that, we
need the notion of a µ∗-measurable set.

Definition A.7. For a nonempty set X, suppose we have an outer measure µ∗ on X. We say
that a set A ⊂ X is µ∗-measurable, or simply measurable, if

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩AC)

for every E ⊂ X.

Now we are ready to state our stronger result.

Proposition A.8. Let S ⊂ P(X) be a semi-ring with X ∈ S. Suppose that ρ : S → [0,∞] is a
premeasure. The outer measure we constructed as in the case for Proposition A.6 agree with ρ
on S and every element of S is µ∗-measurable.

Step 4

We are ready to obtain a measure.

Theorem A.9 (Caratheodory Theorem). Let X be nonempty and µ∗ be an outer measure on
it. Then,

1. The collection A of µ∗-measurable sets is an σ-algebra.
2. The restriction of µ∗ to A is a complete measure2, which we denote it by µ.

Proof. (1) We will show that A is an σ-algebra by showing it is closed under complement and
closed under countable unions. Closed under complement is easy to see as if A is countable, we
have

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩AC) = µ∗(E ∩AC) + µ∗(E ∩ (AC)C) = µ∗(E)

for any subset E.

To show it is closed under countable unions, we first show that it is closed under finite unions,
then extend it to the countable case.

For A,B ∈ A, we have

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩AC)

= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩BC) + µ∗(E ∩AC ∩B) + µ∗(E ∩AC ∩BC)

= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩BC) + µ∗(E ∩AC ∩B) + µ∗(E ∩ (A ∪B)C).

2A measure is complete if it contains every subset of sets with measure zero.
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Notice that we have

A ∪B = (A ∩B) ∪ (AC ∩B) ∪ (A ∩BC)

E ∩A ∪B = (E ∩A ∩B) ∪ (E ∩AC ∩B) ∪ (E ∩A ∩BC)

so we have

µ∗(E ∩A ∪B) ≤ µ∗(E ∩A ∩B) + µ∗(E ∩AC ∩B) + µ∗(E ∩A ∩BC),

which implies
µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)C).

The reverse inequality is trivial as E = [E ∩ (A ∪ B)]
⋃
[E ∩ (A ∪ B)C ]. The finite intersection

follows from this via induction.

Next, we will extend it to the countable case. We just need to show it is closed under countable
disjoint union, as the rest will follow quite trivially (just remove the union of all the previous
sets from the n-th set, which turn an arbitrary sequence to a disjoint sequence).

Consider the sequence of disjoint sets {Aj}. We define

Bn :=

n⋃
j=1

Aj , B :=

∞⋃
j=1

Aj

and we have
Bn ∩An = An, Bn ∩AC

n = Bn−1.

So, considering arbitrary subset E, we have

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩AC
n ) = µ∗(E ∩An) + µ∗(E ∩Bn−1).

This then implies µ∗(E ∩Bn) =
∑n

j=1 µ
∗(E ∩Aj). Using this result, we have

µ∗(E) = µ∗(E∩Bn)+µ∗(E∩BC
n ) =

n∑
j=1

µ∗(E∩Aj)+µ∗(E∩BC
n ) ≥

n∑
j=1

µ∗(E∩Aj)+µ∗(E∩BC)

as BC ⊂ BC
n . Taking limn gives us

µ∗(E) ≥
∞∑
j=1

µ∗(E∩Aj)+µ∗(E∩BC) ≥ µ∗(∪∞
j=1E∩Aj)+µ∗(E∩BC) ≥ µ∗(E∩B)+µ∗(E∩BC)

as E ∩ B ⊂ ∪∞
j=1E ∩ Aj . The reverse inequality is trivial, and thus we have obtained closure

under countable union.

(2) We need to show that the restriction is a complete measure. First we show the restriction is
a measure, then we show it is complete.

From before, notice that we have obtained

µ∗(E) ≥
∞∑
j=1

µ∗(E∩Aj)+µ∗(E∩BC) ≥ µ∗(∪∞
j=1E∩Aj)+µ∗(E∩BC) ≥ µ∗(E∩B)+µ∗(E∩BC) = µ∗(E),
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meaning that all inequalities are in fact equalities. So, we get

∞∑
n=1

µ∗(E ∩An) = µ∗(E ∩B).

If we pick E = B, we have

∞∑
n=1

µ∗(An) = µ∗(B) = µ∗(∪∞
n=1An),

as desired for the restriction to be a measure.

Then we show completeness. For A ∈ A with µ(A) = 0 and some B ⊂ A, we know that
µ∗(B) ≤ µ∗(A) = 0, so µ∗(B) = 0. We just need in addition, µ∗(B) = 0 implies B ∈ A. To show
this, we consider for any subset E

µ∗(E) = µ∗(E ∩B) + µ∗(E ∩BC) ≤ µ∗(B) + µ∗(E ∩BC) = µ∗(E ∩BC) ≤ +µ∗(E).

This means B is mu∗-measurable. Done.

This measure is good, but is it unique? Turns out, we need additional conditions to have
uniqueness.

Theorem A.10. Let S ⊂ P(X) be a semi-ring with X ∈ S and µ0 be a σ-finite premeasure
on it. We let Σ be the set of µ∗-measurable sets. Suppose there is another outer measure
ν∗ : P(X) → [0,∞] such that ν∗ = µ0 on S, then we must have ν∗ = µ∗ on Σ.

A.2 Convergence Results

Theorem A.11 (Monotone Convergence Theorem). Let {fn} be a sequence of nonnegative
measurable functions on E such that fn ≤ fn+1 for every n. For every x ∈ E, we set f(x) :=
lim fn(x). Then, ∫

fdµ =

∫
lim fndµ = lim

∫
fndµ.

Proof. First, f is measurable as it is the limit (defined pointwise) of measurable functions. Next,
as fn ≤ f , we have

∫
fn ≤

∫
f and also

lim

∫
fndµ ≤

∫
fdµ.

So, we just need to obtain the reverse inequality to establish the desired equality.

Let us consider a simple function h(x) :=
∑k

i=1 αi1Ai
with h ≤ f . We consider some a ∈ [0, 1)

so ah < f and we denote
En := {x ∈ E | ah(x) ≤ fn(x)}.

Since fn ↗ f , we have En ↗ E. This gives us the following∫
fndµ ≥

∫
fn1Endµ ≥

∫
ah(x)1Endµ = a

k∑
i=1

αiµ(Ai ∩ En).
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Since En ↗ E, we would also have Ai ∩ En ↗ Ai ∩ E = Ai. So, taking limn gives us

lim

∫
fndµ ≥ lim a

k∑
i=1

αiµ(Ai ∩ En) = a

k∑
i=1

αiµ(Ai) = a

∫
hdµ.

Since a and h are both arbitrary, we take lima→1 and suph, which yields

lim

∫
fndµ ≥

∫
fdµ,

as desired.

Theorem A.12 (Fatou Lemma). Let {fn} be a sequence of nonnegative measurable functions.
Then, ∫

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ.

Proof. First, we have
lim inf
n→∞

fn = lim
k→∞

inf
n≥k

fn.

Clearly, infn≥k fn is increasing in k, so by monotone convergence theorem, we have∫
lim inf
n→∞

fndµ =

∫
lim
k→∞

inf
n≥k

fndµ = lim
k→∞

∫
inf
n≥k

fndµ.

Next, we know that infn≥k fn ≤ fp for any p ≥ k. So,∫
inf
n≥k

fndµ ≤
∫

fpdµ

and ∫
inf
n≥k

fndµ ≤ inf
p≥k

∫
fpdµ.

Therefore, we have∫
lim inf
n→∞

fndµ = lim
k→∞

∫
inf
n≥k

fndµ ≤ lim
k→∞

inf
p≥k

∫
fpdµ = lim inf

∫
fndµ,

as desired.

Theorem A.13 (Dominated Convergence Theorem). Let {fn} be a sequence of integrable func-
tion, f be a measurable function with fn → f a.e., and there exits an integrable function g such
that g ≥ 0 and |fn(x)| ≤ g(x) for all x. Then, we have∫

fdµ =

∫
lim fndµ = lim

∫
fndµ.

Proof. Note that as |fn(x)| ≤ g(x) for all n and fn → f a.e. implies that |f(x)| ≤ g(x) a.e., so
f is integrable as well.
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Next, as |fn| ≤ g, we consider g − fn, g + fn ≥ 0 for all n. Using Fatou, we have∫
gdµ−

∫
fdµ =

∫
lim inf
n→∞

(g − fn)dµ ≤ lim inf
n→∞

∫
(g − fn)dµ =

∫
gdµ− lim sup

n→∞

∫
fndµ∫

gdµ+

∫
fdµ =

∫
lim inf
n→∞

(g + fn)dµ ≤ lim inf
n→∞

∫
(g + fn)dµ =

∫
gdµ+ lim inf

n→∞

∫
fndµ

which gives us, after rearranging the terms,

lim sup
n→∞

∫
fndµ ≤

∫
fdµ ≤ lim inf

n→∞

∫
fndµ

and thus we have the desired equality.

A.3 Product Measure

Earlier we have described how one could construct a measure abstractly. Here we will apply that
procedure to obtain the product measure.

Consider two measure spaces (X,M, µ) and (Y,N , ν). A rectangle in X×Y is a set of the form
A × B where A ∈ M, B ∈ N . It can be verified that the set of rectangles S form a semi-ring.
We can defined a premeausre ρ as follows:

ρ(A×B) = µ(A)ν(B)

for all A× B ∈ S. The verification that this is indeed a premeasure involves a bit of work, but
it could be done (apply MON twice). Then, we can extend it using Caratheodory and obtain a
measure and a measurable set. The measure is denoted by π = µ⊗ ν and the measurable set is
denoted by M⊗N .

The key result involving produce measure is the Fubini-Tonelli theorem, which gives us justifi-
cation to exchange the order of integration.

We need some preliminary definitions and result first.

Definition A.14. If E ⊂ X × Y , then we denote Ex := {y ∈ Y | (x, y) ∈ E} and Ey := {x ∈
X | (x, y) ∈ E}. If f : X × Y → R, then we denote fx(y) := f(x, y) for any fixed x ∈ X and
fy(x) := f(x, y) for any fixed y ∈ Y .

Proposition A.15. Consider two measure spaces (X,M, µ) and (Y,N , ν).

1. If E ∈ M⊗N , then Ex ∈ N and Ey ∈ M.
2. If f : X×Y → R is M⊗N measurable, then fx is N measurable and fy is M measurable.

Proof. (1) Consider the set R := {E ⊂ X × Y | Ex ∈ N , Ey ∈ M}. The desired result follows if
we can show R ⊃ M⊗N . First, we notice that if A ∈ M and B ∈ N , we have (A × B)x is B
when x ∈ A and ∅ when x /∈ A. Similarly (A× B)y is A when y ∈ B and ∅ when y /∈ B. So, R
contains all the rectangles. If we can then establish that R is an σ-algebra, then it must contain
the σ-algebra generated by rectangles, which is just M⊗N .

Notice that (EC)x = (Ex)
C ∈ N and (EC)y = (Ey)C ∈ M, which yields the closure under

complement. Closure under countable union is simple too. We have (∪En)x = ∪(En)x ∈ N .
The rest follows trivially.
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(2) This is a consequence of (1). We have

(fx)
−1(B) = (f−1(B))x

from definition. The rest follows from (1) trivially.

Theorem A.16 (Fubini-Tonelli Theorem). Consider two σ-finite measure spaces (X,M, µ) and
(Y,N , ν).

1. (Tonelli) Let f ∈ L+(X × Y ) be M⊗N measurable. Then the functions

g(x) :=

∫
Y

fx(y)dν, h(x) :=

∫
X

fy(x)dµ,

are measurable in L+(X) and L+(Y ) respectively. Also, we have∫
X×Y

fdπ =

∫
X

gdµ =

∫
Y

hdν.

2. (Fubini) Let f ∈ L1(X × Y ). fx and fy are thus in L1(X) for µ-a.e. x and L1(Y ) for
ν-a.e. y respectively. The functions g, h are also measurable a.e. with∫

X×Y

fdπ =

∫
X

gdµ =

∫
Y

hdν.
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