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Preface

This is the notes taken while taking MATH0071 Spectral Theory by Prof Leonid Parnovski at
UCL in Term 1, 2022.

In Chapter 1, we recall some basic results from linear algebra and functional analysis to motivate
the study of spectral theory. In Chapter 2, we start by introducing the two key objects - the
spectrum and the resolvent - and discuss various fundamental properties and results about them.
We then move on to two specific types of operators - projections and compact operators - in
Chapter 3. Note that we only require the space to be Banach in the first three chapters. From
there onwards, we move to Hilbert spaces and study some theories in Chapter 4. The final
chapter, Chapter 5, studies some additional topics of spectral theory.

The sections with asterisks are not examinable, mostly those involved with unbounded opera-
tors. However, it would be beneficial to still read them as many interesting spectra come from
differential operators, which are unbounded.

Note that in this course, N = {1, 2, 3, · · · }.
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Chapter 1

Introduction

Spectral theory studies the spectrum of operators. Operator is a very broad term, and different
kinds of operators (self-adjoint, bounded, etc.) have very different properties, and naturally very
different properties of their spectrum. In this course, we will develop the spectral theory of
bounded operators rigorously, and that of unbounded operators in a hand-wavy manner due to
time constraints. Differential operators are unbounded, and they are of great significance and
provide a lot of motivation for the development of spectral theory, which is why we believe it
would be helpful to mention the spectrum of unbounded operators every now and then.

This course will start with discussing spectral theory in Banach spaces, and we will prove as
much as we can in it. Then we will move on to Hilbert spaces. Some people teach spectral
theory by diving right into Hilbert spaces, but since many results will remain valid in Banach
spaces we might as well start with those.

So far, we have used the term ‘spectrum’ a lot. This is not too new of a concept. Consider a
n× n matrix A with R entries, which is a linear operator that maps from Rn to Rn. The set of
eigenvalues of A is then the spectrum of A. In the following section, we will start with a recap
of the results for these finite-dimensional operators.

In this course, all mappings/operators are going to be linear, unless stated otherwise. Also,
we can only discuss the spectrum for operators that map from a space to itself, so we will only
consider those operators. Finally, we might be working with vector spaces, and those vector
spaces will be on field F, which would be either R or C, and we should assume they are on C
unless stated otherwise.

1.1 Finite-Dimensional Recap

Consider an n×nmatrix A. Now that we know the spectrum of A is just the set of its eigenvalues,
how should we find those?

By definition, if we have
Av = λv

for a non-zero vector v, then we say λ is an eigenvalue of A with v being its corresponding
eigenvector (or the other way around). Equivalently, we the above equation is just (A−λI)v = 0.
Since v is non-zero, this equation implies that A−λI has non-trivial kernel (i.e. not {0}), which
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also means A− λI is not injective. So far, everything we have derived does not rely on the fact
that A is a finite-dimensional operator.

In the finite-dimensional setting, if an operator is not injective, it is also not surjective, and not
bijective. So, A− λI is not bijective, meaning that it is also not invertible, which is to say

det(A− λI) = 0.

The determinant of A − λI is called the characteristic polynomial χA(λ) of A, which is a
polynomial of degree n. Thus, the eigenvalues of A are just the set of roots of the characteristic
polynomial. By the Fundamental Theorem of Algebra, the characteristic polynomial is of degree
n, so it has n roots in C, although some of them might be repeating. This means there will
always be n eigenvalues for A.

If all eigenvalues are distinct, A is diagonalisable, meaning that there exists matrix T such
that T−1AT = D for a diagonal matrix D. Notice that this T should also have columns that are
orthogonal to each other and are unit vectors, so T is an orthonormal matrix.

If a matrix has repeated eigenvalues, it is still possible to be diagonalisable, as long as the
algebraic multiplicity and geometric multiplicity of every eigenvalue of the matrix coincide. Let
us define these two multiplicities. For matrix A with distinct eigenvalues λ1, . . . , λk, we can
factorise the characteristic function as

χA(λ) = (λ1 − λ)a1 · · · (λk − λ)ak .

In this case, ak is the algebraic multiplicity of the eigenvalue λk. Next, for an eigenvalue λ,
we will consider its corresponding eigenspace Vλ = {v : Av = λv}, which is the space of all
possible eigenvectors with eigenvalue λ. The dimension of eigenspace Vλ is then defined to be the
geometric multiplicity of λ. We claim that for a fixed eigenvalue, its algebraic multiplicity is
greater than or equal to its geometric multiplicity. A consequence of this is that a matrix with
distinct eigenvalues will have algebraic multiplicity 1 for all its eigenvalues and thus geometric
multiplicity 1 as well, so these two quantities coincide for every eigenvalue, resulting in this
matrix being diagonalisable.

It is not always the case that the two multiplicities coincide, of course. Consider matrix

A =

[
0 1
0 0

]
.

It can be computed that A has repeated eigenvalues 0, so it has algebraic multiplicity 2, while
its geometric multiplicity is only 1.

It is going to be a bit of an effort to check for the coincidence of two multiplicities of all eigenvalues
of a matrix. For some matrices, it would be obvious after first glance to realise it is diagonalisable.
A matrix A that satisfies A∗ = A, with A∗ being the adjoint of A, is called self-adjoint (or
Hermitian), and such matrices would be diagonalisable. The adjoint of a matrix is just the
transpose of the complex conjugate of A, while if the matrix is on R it is simply the transpose.
So, if we are only on R, a self-adjoint matrix is called symmetric.

Self-adjoint is a very useful property to have. A lot of horrible things might happen if the matrix
does not have this property. To illustrate one potential catastrophe, consider the following two
matrices. Matrix A is 31×31, with entries 2 on (1, 2), (2, 3), . . . , (30, 31) and entries 0 everywhere
else. Matrix B is almost the same as A, but the bottom left entry of B is 2−30 instead of 0.
Notice that B is a slightly perturbed version of A, and the magnitude of this perturbation is
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almost negligible, especially if it is stored in a computer (almost all computers will view 0 and
2−30 as the same). However, if we consider the characteristic polynomials of A and B, we would
have

χA(λ) = −λ31

and
χB(λ) = −λ31 + 1.

This means, the spectrum of A, denoted by σA, is {0}, while the spectrum of B is 31-th roots of
unity. Graphically speaking, on a complex plane, σA is simply the origin while σB is the equally
spread out points on the unit circle. Those are very different, yet for a computer, this difference
cannot be noticed, which is why eigenvalues computed by a computer might not be accurate.
This issue, however, does not arise for self-adjoint matrices, which is why they are so great.

Earlier on, we demonstrated a sequence of equivalent formulations of eigenvalues and eigenvec-
tors. We started with a few alternative formulations that do not rely on the operator being
finite-dimensional. We only incorporate the fact that the operator is finite-dimensional into the
derivation when we claim that a finite-dimensional operator that is not injective is not surjective
and not bijective either. This equivalence does not hold for infinite dimensional operators. Let
us consider an example when this does not hold.

Consider the linear mapping T : S → S for some infinite dimensional set S. If S = N being
the natural number starting from 1 (note that in this course N starts from 1), the mapping
T : n 7→ n + 1 is injective but not surjective, and the mapping P : n 7→ n − 1 for n ̸= 1 and
1 7→ 1 is surjective but not injective.

Alternatively, consider S = l2 where l2 is the set of infinite dimensional vectors with a finite sum
of squares of its entries. The mapping

A(x1, x2, . . .) = (0, x1, x2, . . .)

is injective but not surjective, and the mapping

B(x1, x2, x3, . . .) = (x2, x3, . . .)

is surjective but not injective. Also, notice that

AB(x1, x2, . . .) = (0, x2, x3, . . .)

and
BA(x1, x2, . . .) = (x1, x2, x3, . . .)

which is the identity. This hints at the idea of left inverse and right inverse, which will be
discussed in detail later.

1.2 Spaces Basics

Let X be a vector space over F.

Definition 1.1. A norm is a function ∥ · ∥ : X → [0,∞) such that

1. ∥x∥ = 0 ⇐⇒ x = 0
2. ∥λx∥ = |λ|∥x∥ for all λ ∈ F and x ∈ X
3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.
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Given this norm, we can then induce a metric d if we let d(x, y) := ∥x− y∥ for all x, y ∈ X.

An important property that we would like to have is completeness. A normed space (i.e. a vector
space equipped with a norm) is complete if every Cauchy sequence converges.

Definition 1.2. A Banach space (X, ∥·∥) is a normed space that becomes complete with respect
to the induced metric d.

So far we have metric and norm, and a metric can be induced by a norm. Next, we would like
to go one step further and define the inner product.

Definition 1.3. A vector space X is an inner product space if there exists a function, known
as the inner product, (·, ·) : X ×X → F such that

1. (x, x) ≥ 0 for all x inX
2. (x, x) = 0 ⇐⇒ x = 0
3. (λx+ µy, z) = λ(x, z) + µ(y, z) for all λ, µ ∈ F and x, y, z ∈ X.
4. (x, y) = (y, x) for all x, y ∈ X.

Given an inner product (·, ·), we can induce a norm ∥ · ∥ by setting ∥x∥ =
√
(x, x). To verify

this function is indeed a norm, we would need to use the Cauchy-Schwarz-Buniakovski
inequality (more commonly known as Cauchy-Schwarz inequality), which states that |(x, y)| ≤
∥x∥ · ∥y∥ for all x, y ∈ X.

A normed space that is complete is known as the Banach space. Now that we have an inner
product space, we would have the following definition.

Definition 1.4. An inner product space (X, (·, ·)) is a Hilbert space if it is complete in the
induced norm ∥ · ∥.

1.3 Spaces Examples

Here, we will give a few examples of spaces that we will be working with.

Example. We will start with two infinite-dimensional vector spaces, c00 and c0.

c00 = {x = (x1, x2, . . . , xn, 0, . . .), xj ∈ C}

and
c0 = {x = (x1, x2, . . .), xj ∈ C, xn → 0 as n → ∞}.

We can equip these two spaces with the sup norm, which is ∥x∥ = supj |xj |. The first space is
not Banach, while the second space is. To see why the first space is not, consider the vector
xn = (1, 1/2, . . . , 1/n, 0, . . .) which is in c00. It is clear that {xn} is Cauchy, but it does not
converge in c00, although it does converge in c0.

Example. We will consider another infinite-dimensional vector space lp.

lp =

x = (x1, x2, . . .), xj ∈ C

∣∣∣∣∣
∞∑
j=1

|xj |p < ∞

 .

The space can be equipped with the lp norm, defined by ∥x∥p :=
[∑∞

j=1 |xj |p
]1/p

. This space

would be a normed space and Banach space for 1 ≤ p < ∞. When p = 2, this space would be a
Hilbert space, with the inner product (x, y) :=

∑∞
j=1 xjyj .

6



Example. The last vector space that we will consider here is the l∞ space, which is defined by

l∞ = {x = (x1, x2, . . .), xj ∈ C}

and the norm of this space is ∥x∥∞ = supj |xj | < ∞.

Example. Moving on to spaces of functions. SetX = C[a, b] be the space of continuous functions
on [a, b], with a < b and a, b ∈ R. For every function f : X → X in C[a, b], we will define the
norm ∥f∥ = supt∈[a,b] |f(t)|. This space is a Banach space.

Example. We then consider the function space Cp[a, b] of continuous functions on [a, b] with

norm defined to be ∥f∥p =
[∫ b

a
|f(t)|pdt

]1/p
for f ∈ Cp[a, b]. This is a normed space for 1 ≤

p < ∞. This space is, however, not complete, and the completion of it is the Lp[a, b] space. An
example to illustrate the incompleteness of Cp is the sequence of functions fn that takes 0 from
a to a+(b−a)/2−1/n, 1 from a+(b−a)/2+1/n to b, and linear in between. This function will
converge to a function that takes 0 in the first half and 1 in the second half, with a discontinuity
in between - which is not in Cp.

1.4 Operators Basics

At this stage, we have established spaces for the operators to be a mapping from. Next, we will
develop some results about such operators.

Theorem 1.5. Let X,Y be normed spaces with norms ∥ · ∥X and ∥ · ∥Y respectively, and A :
X → Y . The following are equivalent:

1. A is continuous
2. A is continuous at any point
3. A is continuous at 0
4. there exists constant c > 0 such that ∥Ax∥Y ≤ c∥x∥X for all x ∈ X.

We would also say A is a bounded operator.

The last formulation in the above theorem helps us to define the norm of an operator.

Definition 1.6. For a bounded operator A, we can define ∥A∥ in the following equivalent ways:

1. inf{c > 0 | ∥Ax∥Y ≤ c∥x∥X for all x ∈ X}
2. inf{c > 0 | ∥Ax∥Y ≤ c for all possible ∥x∥ ≤ 1}
3. supx∈X,x ̸=0

∥Ax∥Y

∥x∥X

4. supx∈X,x ̸=0,∥x∥≤1 ∥Ax∥Y .

In particular, we have ∥Ax∥ ≤ ∥A∥ · ∥x∥ for all x ∈ X.

If the operator norms satisfy ∥AB∥ ≤ ∥A∥ · ∥B∥ for any operators A,B of a vector space of
operators, the space will be called a Banach algebra.

Definition 1.7. Let X,Y be Banach spaces. We say that (A,DA) is an unbounded operator
from X to Y if DA, the domain of A, is a linear subspace of X and A : DA → Y .

Now we will discuss some properties of operators. If A is bounded, it is also continuous, meaning
that if we have {xn} with xn → x, then Axn → Ax. If A is closed, then it means for a sequence
{xn} with xn → x and Axn → y, we would have Ax = y.
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Theorem 1.8. Let X,Y be normed spaces. Then, the space B(X,Y ) of all bounded operators
A : X → Y is a normed space with operator norm. The space B(X,Y ) is Banach if and only if
Y is Banach.

Next, we will define the dual space.

Definition 1.9. Let X be a normed space. A functional f : X → F is a bounded mapping.
The collection of all functionals is called the dual space X∗ of X, and a dual space is always a
Banach space.

Some examples of dual spaces are shown next. l∗p
∼= lq where 1/p + 1/q = 1 for 1 < p, q < ∞.

l∗1
∼= l∞. c∗0

∼= l1. A space will be called reflexive if X∗∗ ∼= X, i.e. the dual of the dual is, in a
rough sense, itself.

Given that we have defined the dual space, we can then define the two types of convergences in
a normed space.

Definition 1.10. Let X be a normed space, and consider {xn} with xn ∈ X and x ∈ X. We
say that

1. xn converges to x strongly if ∥xn − x∥ → 0. We will denote it as xn → x or s-lim xn = x
or limxn = x

2. xn converges to x weakly if for all functionals f ∈ X∗, we have f(xn) → f(x). We will
denote it as w-lim xn = x or xn ⇀ x.

From the notation, it is obvious that the first type of convergence is stronger than the second.
Let us consider the following an example of weak convergence that is not strong convergence.

Example. Let X = c0, and we define xn = en = (0, . . . , 0, 1, 0, . . .) with 1 being the n-th entry.
We will also consider x = (0, 0, . . .). First, we claim that xn ⇀ x. To show this, for any f ∈ c∗0,
we would want to have f(xn) → f(x). We know that f = (f1, f2, . . .) ∈ l1, so

∑
|fj | < ∞ and

with f(y) =
∑

fjyj . This means, f(xn) = fn → 0 = f(x) as n → ∞ since f ∈ l1. Next, it is
trivial that ∥xn − x∥ ≠ 0, meaning that xn does not converge to x strongly.

1.5 Convergence of Operators

Suppose we have a sequence of operators An and A in B(X), the set of bounded operators from
X to X. There are three types of convergence of operators.

1. We say An converges to A uniformly (in norm) if ∥An − A∥ → 0. We denote it by
limAn = A.

2. We say An converges to A strongly if for all x ∈ X, we have Anx → Ax, i.e. ∥Anx−Ax∥ →
0. We denote it by s-limAn = A.

3. We say An converges to A weakly if for all x ∈ X, we have Anx ⇀ Ax, i.e. for all f ∈ A∗,
we have f(Anx) → f(Ax). We denote it by w-limAn = A.

It is clear that uniform convergence =⇒ strong convergence =⇒ weak convergence. We will
show one example of An converging strongly to A while it does not converge uniformly.

Example. Consider X = l2. We define Anx = (x1, . . . , xn, 0, . . .). For n > m, we have

(An −Am)x = (0, . . . , 0, xm+1, . . . , xn, 0, . . .),

which implies ∥(An −Am)x∥ ≤ 1 · ∥x∥. Also, consider en = (0, . . . , 0, 1, 0, . . .) ∈ l2. We have

(An −Am)en = 1 · ∥en∥

8



which means the inequality is sharp, and the operator norm of ∥An − Am∥ is 1, meaning that
{An} is not Cauchy and thus {An} does not converge uniformly. However, An does converge
strongly to identity I. Notice that

∥Anx− Ix∥ = ∥(0, . . . , xn+1, xn+2, . . .)∥ =

∣∣∣∣∣∣
∞∑

j=n+1

x2
j

∣∣∣∣∣∣
1/2

→ 0

as n → ∞ since x ∈ l2.

Next, we will consider two types of sequence convergence.

Definition 1.11. Let X be a normed space. Consider a sequence xj, x ∈ X. We say that the
series

∑∞
j=1 xj converges to x if s-limSn = x where the partial sum Sn =

∑n
j=1 xj. We say

the series
∑∞

j=1 xj converges absolutely if
∑∞

j=1 ∥xj∥ converges.

Theorem 1.12. When X is a Banach space, a series that is converging absolutely is convergent.

Proof. Since X is a Banach space, it is complete for every Cauchy sequence converges. Assuming
{xj} in X converges absolutely to x ∈ X, we have, for any ε > 0, there exists some N such that
for n > m > N , we have

n∑
j=1

∥xj∥ −
m∑
j=1

∥xj∥ =

n∑
j=m+1

∥xj∥ ≤ ε.

Using triangular inequality, we have∥∥∥∥∥∥
n∑

j=1

xj −
m∑
j=1

xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑

j=m+1

xj

∥∥∥∥∥∥ ≤
n∑

j=m+1

∥xj∥ ≤ ε

where the first inequality above involves the triangular inequality. Thus, the sequence of partial
sums is Cauchy, so it converges, as desired.

1.6 Inverse and Perturbation of Operators

We first recall some definitions from Linear Algebra that are used in Functional Analysis.

Let A ∈ B(X,Y ) be a bounded operator between normed spaces X and Y . We denote the
kernel of A as

Ker(A) := {x ∈ X | Ax = 0}

and the range of A as

Ran(A) := {y ∈ Y | ∃x ∈ X with Ax = y} = {Ax | x ∈ X}.

Notice that Ker(A) is a closed subspace of X.

Saying A is invertible (or bijective) is equivalent to say that (1) Ker(A) = {0}, i.e. A is injective
(or one-to-one), and (2) Ran(A) = Y , i.e. A is surjective (or onto). Notice if A is invertible, we
will denote its inverse as A−1 and we will have AA−1 = A−1A = I, where the identity is in its
corresponding spaces. Next, we have the following result.
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Theorem 1.13 (Banach Inverse Mapping). If X and Y are Banach spaces, and if A ∈ B(X,Y )
and A−1 exists, then A−1 ∈ B(Y,X).

This theorem is a direct result of the open mapping theorem, which we state below, since a
bounded operator is a continuous operator.

Theorem 1.14 (Open Mapping Theorem). If X and Y are Banach spaces, and if A ∈ B(X,Y )
and A is surjective, then A is an open map ( i.e. for any G that is open in X, A(G) is open in
Y ).

Inverse might not always exist, but sometimes we could have partial inverses known as the left
inverse and the right inverse.

Definition 1.15. Let A ∈ B(X,Y ) for normed spaces X and Y . A left inverse A−1
l of A is

an operator from Y to X such that A−1
l A = IX . A right inverse A−1

r of A is an operator from
Y to X such that AA−1

r = IY .

It is clear that a left inverse will exist if Ker(A) = {0}, and a right inverse will exist if Ran(A) = Y .
This then implies the following theorem.

Theorem 1.16. Let A ∈ B(X,Y ) for normed spaces X and Y . If A has both left inverse A−1
l

and right inverse A−1
r , then A is invertible, and we have A−1 = A−1

l = A−1
r .

This theorem should be clear from the definitions of left and right inverses. Next, we will have
several properties about inverses, which are standard Linear Algebra.

Lemma 1.17. Assuming the operators and product of operators in the following are well defined.
We have:

1. For A,B ∈ B(X,Y ), if both A−1 and B−1 exist, then (AB) is invertible, and (AB)−1 =
B−1A−1.

2. For A,B ∈ B(X,X), if AB = BA and (AB) is invertible, then A and B are invertible.
3. For A,B ∈ B(X,X), if AB = BA and A−1 exists, then A−1B = BA−1.

Proof. (1) Notice that A−1 and B−1 exist implies A−1A = AA−1 = I and B−1B = BB−1 = I.
So, we have B−1A−1AB = B−1B = I and ABB−1A−1 = AA−1 = I, thus (AB) is invertible
with its inverse being (B−1A−1).

(2) Since (AB) is invertible, so there exist some S such that SAB = ABS = I. This means
(BS) is a right inverse of A. Also, SAB = SBA since AB = BA, and this implies that (SB) is
a left inverse of A. So, A has both left and right inverse, meaning that it is invertible. A similar
argument can be established for B to show that B is invertible.

(3) We have A−1B = A−1BAA−1 = A−1ABA−1 = BA−1, as desired.

Notice that the second part of the above lemma is some form of the converse of the first part, but
with an additional condition on the commutativity of A and B. We will establish an example in
the following to show that the second part of the lemma will not hold without the commutativity.

Example. Consider X = l2, so each element x ∈ X will be of the form x = (x1, x2, . . .). Define
two operators A and B as

A(x1, x2, . . .) := (0, x1, x2, . . .)

and
B(x1, x2, x3, . . .) := (x2, x3, . . .).
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Notice that BA = I and is invertible, while AB ̸= I, as

AB(x1, x2, . . .) = (0, x2, x3, . . .).

Clearly, A and B are not invertible. So the second part of the above lemma will not hold without
AB = BA.

We will end this section by discussing two perturbation lemmas. A perturbation is the concept
of making a change of small magnitude to some object, and we would like to see how stable that
object is to the perturbation.

Lemma 1.18 (First Perturbation Lemma). Let X be a Banach space and A ∈ B(X). If ∥A∥ < 1,
then (I −A) is invertible, and

(I −A)−1 =

∞∑
n=0

An = I +A+A2 + . . . .

Also, ∥(I −A)−1∥ ≤ 1
1−∥A∥ .

Proof. Define S =
∑∞

n=0 A
n. This series converges uniformly, which can be established by

showing that the partial sum converges absolutely. Recall that ∥Ak∥ ≤ ∥A∥k since ∥AB∥ ≤
∥A∥∥B∥. We have,

∞∑
k=0

∥Ak∥ ≤
∞∑
k=0

∥A∥k < ∞

since ∥A∥ < 1. We have shown in the previous section that absolute convergence implies conver-
gence in Banach spaces.

Next, we would like to show S(I −A) = (I −A)S = I. We have

n∑
k=0

Ak(I −A) = I −An → I

as n → ∞, and similar for (I −A)S. So (I −A)−1 exists.

To show the norm bound of this inverse, we have

∥(I −A)−1∥ =

∥∥∥∥∥
∞∑

n=0

An

∥∥∥∥∥ ≤
∞∑

n=0

∥An∥ ≤
∞∑

n=0

∥A∥n =
1

1− ∥A∥

since ∥A∥ < 1.

Lemma 1.19 (Second Perturbation Lemma). Let X,Y be Banach spaces and A,B ∈ B(X,Y ).
Let A be invertible, and ∥B∥ < 1/∥A−1∥. Then, (A+B) is invertible,

(A+B)−1 = A−1
∞∑
j=0

(−1)j(BA−1)j ,

and we have

∥(A+B)−1∥ ≤ ∥A−1∥
1− ∥B∥ · ∥A−1∥

.
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Proof. Notice that A+B = A(I−(−A−1B)). From the conditions, we know that A is invertible.
Next, we have

∥ −A−1B∥ ≤ ∥A−1∥ · ∥B∥ < 1.

So, from the first perturbation lemma, I − (−A−1B) is invertible as well. So, from a previous
lemma, if X and Y are invertible then XY is invertible too, so here, (A+B) is invertible since
A and I −A−1B are invertible.

To compute the explicit form of the inverse, we have

(A+B)−1 = [A(I − (−A−1B))]−1 =

 ∞∑
j=0

(−1)j(A−1B)j

A−1 = A−1
∞∑
j=0

(−1)j(BA−1)j ,

using the expression from the first perturbation lemma.

Similarly, for the norm of the inverse, we have

∥(A+B)−1∥ = ∥[A(I − (−A−1B))]−1∥
≤ ∥A−1∥ · ∥(I − (−A−1B))−1∥

≤ ∥A−1∥
1− ∥A−1B∥

≤ ∥A−1∥
1− ∥A−1∥ · ∥B∥

,

as desired.
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Chapter 2

Spectrum and Resolvent

2.1 Basic Definitions

Spectral theory studies the spectrum of various kinds of operators, and finally, we will define in
this section what the spectrum of an operator is.

Definition 2.1. Let X be a Banach space, and A ∈ B(X).

• The resolvent set ρ(A) is the set of all λ ∈ C such that (A−λI) is invertible, and (A−λI)−1

is bounded.
• The spectrum σ(A) is the complement of ρ(A), so we have σ(A) = C\ρ(A).
• We say λ ∈ C is an eigenvalue if there exists some eigenvector (or eigenfunction) x ∈
X\{0} such that Ax = λx.

• The set of all eigenvalues of A is called a point spectrum σp(A).

Remark. The boundedness condition of the inverse in the first definition above holds automat-
ically for bounded operators due to the existence of inverse and the inverse mapping theorem.
For an unbounded operator A, its resolvent and spectrum and such are defined in the say way,
but notice that for λ to be in the resolvent set, we need to make sure (A − λI)−1 is bounded,
which always holds for bounded A but not for unbounded A.

Theorem 2.2. For a Banach space X and operator A ∈ B(X), we have σp(A) ⊂ σ(A).

Proof. Let λ ∈ σp(A). Then, we have Ax = λx for some x ̸= 0. So, clearly (A− λI)x = 0 with
non-zero x, which makes x ∈ Ker(A− λI). So, Ker(A− λI) ̸= {0}, thus λ ∈ σ(A).

Let us consider some examples of the spectrum and the point spectrum.

Example. If X is a finite-dimensional operator, then σp(X) = σ(X). However, this relationship
rarely holds when the operators are infinite-dimensional.

Example. Consider X = C[0, 1] with ∥ · ∥sup norm. We define operator A by (Af)(t) := tf(t)
for any f ∈ C[0, 1].

For some λ ∈ C, we have
(A− λI)f(t) = (t− λ)f(t)

13



and we are interested in the λ values that make A−λI invertible. Consider some g ∈ C[0, 1], we
have

(A− λI)−1g(t) =
g(t)

t− λ
.

This will be a well-defined operator for λ /∈ [0, 1], so such λ are not in the spectrum.

If λ ∈ [0, 1], we have

Ker(A− λI) = {f | tf(t) = λf(t)} = {f | (t− λ)f(t) = 0} = {0}

since there will always be an undefined point when t = λ. So, there is no eigenvalues, and thus
σp(A) = ϕ. Next, we have

Ran(A− λI) = {(t− λ)f(t) | f ∈ C[0, 1]} = {g ∈ C[0, 1] | g(λ) = 0} ≠ X.

Thus, all such λ will make A− λI not invertible, so σ(A) = [0, 1]. Clearly, σp(A) ̸= σ(A) in this
case.

Now, we will show some properties of the spectrum of a bounded operator.

Theorem 2.3. Let X be a Banach space, and A ∈ B(X). Then, we have

1. σ(A) ⊆ BC(0, ∥A∥) = {λ ∈ C | |λ| ≤ ∥A∥}.
2. Suppose λ0 ∈ ρ(A) and |λ− λ0| < 1/∥(A− λ0I)

−1∥, then λ ∈ ρ(A).

Moreover, σ(A) is compact in C.

Proof. The compactness of σ(A) is a direct consequence of the two parts. The first part indicates
that σ(A) is bounded, while the second part indicates that the complement of σ(A), the resolvent
set ρ(A), is open, which implies that σ(A) is closed. So, σ(A) is closed and bounded, which means
it is compact.

(1) Suppose |λ| > ∥A∥. Then, A− λI = (−λ)(I − A/λ). Notice that ∥A/λ∥ = ∥A∥/|λ| < 1, we
can apply the first perturbation lemma and say that (A − λI)−1 exists. So, λ ∈ ρ(A), and this
implies σ(A) ⊆ BC(0, ∥A∥), as desired.

(2) A − λI = (A − λ0I) + (λ0 − λ)I. Notice that the first term on the right is invertible since
λ0 ∈ ρ(A), and the second term is a small perturbation. We have,

∥(λ0 − λ)I∥ = |(λ0 − λ)| < 1

∥(A− λ0I)−1∥
from the condition. So by the second perturbation lemma, we know that (A−λ0I)+(λ0−λ)I =
A − λI is invertible, meaning that λ ∈ ρ(A). This means, for every point λ0 in ρ(A), we can
always find an open ball with radius 1/∥(A−λ0I)

−1∥ and center λ0, such that it is contained in
ρ(A), thus ρ(A) is open in C.

Remark. As one might have noticed in the proof of this theorem, we would commonly seek help
from the resolvent set when we want to know something about its complement, the spectrum.
This approach will reoccur many times.

Remark. Suppose λ0 ∈ ρ(A) and |λ− λ0| < 1/[2∥(A− λ0I)
−1∥], then we have

∥(A− λI)−1∥ <
∥(A− λ0I)

−1∥
1− ∥(A− λ0I)−1∥ · |λ− λ0|

< 2∥(A− λ0I)
−1∥

using the second perturbation lemma. This bound does not depend on λ, so it is uniformly
bounded. We will use this result later on.
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2.2 Resolvent

Definition 2.4. The operator-valued function of complex variable R(A;λ), defined by λ 7→
(A− λI)−1 for every λ ∈ ρ(A), is called the resolvent of A.

We have two identities about the resolvent, both of which are easy to show.

Lemma 2.5 (First Resolvent Identity).

R(A;λ)−R(A;λ0) = (λ− λ0)R(A;λ)R(A;λ0)

for all λ, λ0 ∈ ρ(A).

Proof.

R(A;λ)−R(A;λ0) = (A− λI)−1 − (A− λ0I)
−1

= (A− λI)−1[(A− λ0I)− (A− λI)](A− λ0I)
−1

= (A− λI)−1(λ− λ0)(A− λ0I)
−1

= (λ− λ0)(A− λI)−1(A− λ0I)
−1.

Remark. The order of R(A;λ) and R(A;λ0) can be switched around.

Lemma 2.6 (Second Resolvent Identity).

R(A;λ)−R(B;λ) = R(A;λ)(B −A)R(B;λ)

for all A,B ∈ B(X) and λ ∈ ρ(A) ∩ ρ(B).

Proof.

R(A;λ)−R(B;λ) = (A− λI)−1 − (B − λI)−1

= (A− λI)−1[(B − λI)− (A− λI)](B − λI)−1

= (A− λI)−1(B −A)(A− λ0I)
−1.

Remark. The order of R(A;λ) and R(B;λ) cannot be switched around.

We will first state and not prove the following theorem-definition, where we study what it means
for an operator-valued function to be holomorphic.

Theorem 2.7. Let Z be a complex Banach space, the domain Ω ⊂ C be an open set, and
F : Ω → Z is a Z-valued function. Then, the following are equivalent:

1. For all λ0 ∈ Ω, there exists

F ′(λ0) =
dF

dλ

∣∣∣
λ=λ0

= lim
λ→λ0

F (λ)− F (λ0)

λ− λ0
∈ Z,

and this limit exists meaning that∥∥∥∥F ′(λ0)−
F (λ)− F (λ0)

λ− λ0

∥∥∥∥→ 0

as λ → λ0.
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2. For all λ0 ∈ Ω, there exists a neighbourhood of λ0 where F has the form

F (λ) =

∞∑
n=0

(λ− λ0)
nFn(λ0)

where Fn(λ0) ∈ Z are coefficients of this decomposition.
3. For all G ∈ Z∗, there is a complex-valued function

Ω ∋ λ 7→ G(F (λ)) ∈ C

is holomorphic in Ω.
4. If Z = B(X,Y ) with Banach spaces X and Y , then for all x ∈ X and g ∈ Y ∗, the

complex-valued function
Ω ∋ λ 7→ g(F (λ)x) ∈ C

is holomorphic.

If these conditions are satisfied, we say that F is holomorphic in Ω.

Next, we will show a few more identities about the resolvent.

Theorem 2.8. Let X be a complex Banach space and A ∈ B(X). Then, the resolvent R(A; ·)
is a holomorphic B(X)-valued function defined on the resolvent set ρ(A). Moreover,

1. we have
d

dλ
R(A;λ)

∣∣∣
λ=λ0

= R(A;λ0)
2

for all λ0 ∈ ρ(A).
2. we have

−λR(A;λ) → I

as λ → ∞.
3. we have

∥R(A;λ)∥ ≥ 1

d(λ, σ(A))

where d(λ, σ(A)) = infµ∈σ(A) |λ− µ|.

Proof. (1) Pick some λ0 ∈ ρ(A). We know that R(A;λ) is bounded in some neighbourhood of
λ0, by part 2 of Theorem 2.3. We also know that, by the first resolvent identity, we have

R(A;λ)−R(A;λ0) = (λ− λ0)R(A;λ)R(A;λ0),

which is equivalent to

R(A;λ) = R(A;λ0) + (λ− λ0)R(A;λ)R(A;λ0),

and the second term of the above equation goes to zero as λ → λ0 since R(A;λ) is bounded.
Thus, taking the limit on both sides of the above equation gives us

lim
λ→λ0

R(A;λ) = R(A;λ0).

Moreover, the first resolvent identity provides us with

R(A;λ)−R(A;λ0)

λ− λ0
= R(A;λ)R(A;λ0),
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and taking limit with λ → λ0 will thus yield the desired identity.

(2) We have, consider λ with |λ| > ∥A∥, then

∥ − λR(A;λ)− I∥ = ∥ − λ(A− λI)−1 − I∥ = ∥(I −A/λ)−1 − I∥

=

∥∥∥∥∥
∞∑

n=0

(
A

λ

)n

− I

∥∥∥∥∥ using the first perturbation lemma

=

∥∥∥∥∥
∞∑

n=1

(
A

λ

)n
∥∥∥∥∥ ≤

∞∑
n=1

∥∥∥∥(A

λ

)n∥∥∥∥ ≤
∞∑

n=1

∥∥∥∥Aλ
∥∥∥∥n =

∞∑
n=1

∥A∥n

|λ|n

=
1

1− ∥A∥/|λ|
· ∥A∥
|λ|

=
∥A∥

|λ| − ∥A∥
→ 0

as λ → ∞. Also, since ∥ − λR(A;λ)− I∥ ≥ 0, we have our desired identity.

(3) Let λ0 ∈ ρ(A). Then, by part 2 of Theorem 2.3, we have B(λ0, 1/∥R(A;λ0)∥) ⊂ ρ(A). Thus,
since σ(A) is the complement of ρ(A), we have

d(λ0, σ(A)) ≥ 1

∥R(A;λ0)∥
,

which yields the desired identity after rearrangement.

2.3 Spectrum is Non-Empty

Before showing that the spectrum is not empty, we need an auxiliary lemma.

Lemma 2.9. Let X be a normed space and x ∈ X. Then, there exists a functional f ∈ X∗ such
that f(x) = ∥x∥ and ∥f∥ = 1.

This result is a corollary of the Hahn-Banach Theorem.

Theorem 2.10. For a Banach space X that is not {0} and A ∈ B(X), we have σ(A) ̸= ∅.

Proof. Suppose σ(A) = ∅, then ρ(A) = C, and R(A;λ) is defined on the whole C and thus is
holomorphic. Take some x ∈ X and g ∈ X∗, and we shall consider the function f that maps

C ∋ λ 7→ g(R(A;λ)x) =: f(λ) ∈ C.

This function is holomorphic on C, and thus is a constant function due to Liouville’s theorem.

Since f(λ) → 0 as λ → ∞, as ∥f(λ)∥ ≤ ∥g∥∥R(A;λ)∥∥x∥ where ∥R(A;λ)∥ → 0 as λ → ∞ by
the second identity of Theorem 2.8, we have f(z) = 0 for all z.

This means, we have f(17) = g(R(A; 17)x) = 0. Using Lemma 2.9, we can pick a good functional
g such that ∥g∥ = 1 and g(R(A; 17)x) = ∥R(A; 17)x∥. This means we have

g(R(A; 17)x) = ∥R(A; 17)x∥ = 0.

Thus, R(A; 17)x = 0, which implies (A− 17I)(A− 17I)−1x = 0, and x = 0. This x is arbitrary,
yet x = 0 for all x ∈ X, which is a contradiction.

Let us compute the spectrum for a few examples.
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Example. Consider a set L = {λ1, λ2, · · · } where λj ∈ C for all j, and ∥λj∥ ≤ M for some
constant M . Let X = l1, and A : X → X with Aen = λnen for all n, which means A is a
diagonal matrix with L being its diagonal. So,

A(x1, x2, . . .) = (λ1x1, λ2x2, . . .)

and ∥A∥ = sup |λj |. It is obvious from the definition that σp(A) = {λ1, λ2, . . .}. Next, since
the spectrum is compact, as proved in Theorem 2.3, and the point spectrum is contained in the
spectrum, we know that the spectrum contains the closure of {λ1, λ2, . . .}. The natural question
to ask at this point is, are there any other points in the spectrum? Consider λ /∈ {λ1, λ2, . . .}
and λ ∈ σ(A). We then would have

(A− λI)−1(x1, x2, . . .) =
(
(λ1 − λ)−1x1, (λ2 − λ)−1x2, . . .

)
which should not be well-defined as λ ∈ σ(A), but it is, given that λ /∈ {λ1, λ2, . . .}. So, we have
a contradiction, and thus σ(A) = {λ1, λ2, . . .}.

Example. Once again, we are working inX = l1. Consider the left shift operator A(x1, x2, . . .) =
(x2, x3, . . .). We know from before that ∥A∥ = 1. In matrix form, this is an infinite-dimensional
Jordan block with zeroes on the diagonal and ones right above the diagonal. First, let us find out
the point spectrum of A. If A is finite-dimensional, the point spectrum will be zero. However,
since we are in infinite-dimensional, things might be different. Suppose for some λ and x ̸= 0,
we have Ax = λx. This means we have

A(x1, x2, . . .) = (x2, x3, . . .) = (λx1, λx2, . . .),

which implies
x2 = λx1, x3 = λx2 = λ2x1, . . . , xn = λn−1x1, . . . ,

so x = x1(1, λ, λ
2, . . .). Since x ̸= 0, we have x1 ̸= 0. For this x to be in l1, we must have

∞∑
n=0

|λn| < ∞,

meaning that |λ| < 1. So, we have σp(A) = {|λ| < 1} = B(0, 1). Next, similar to above, we know
that σ(A) ⊇ Bc(0, 1) = {|λ| ≤ 1}. However, we also know that σ(A) ⊆ Bc(0, ∥A∥) = Bc(0, 1), as
shown in Theorem 2.3, thus σ(A) = Bc(0, 1) = {|λ| ≤ 1}.

To summarise the properties we have established so far about the spectrum σ(A) for A ∈ B(X)
with X being a Banach space, we have

1. σp(A) ⊆ σ(A)
2. σ(A) is compact
3. σ(A) ̸= ∅.

2.4 Spectral Radius

Definition 2.11 (Spectral Radius). The spectral radius of A ∈ B(X) for a Banach space X is
defined as r(A) := sup{|λ| : λ ∈ σ(A)} ∈ R+. Notice that r(A) ≤ ∥A∥ and σ(A) ⊆ Bc(0, r(A)).

Theorem 2.12. Let X be a complex Banach space, and A ∈ B(X). Then, r(A) = limn→∞ ∥An∥1/n.

Proof. In order to prove the desired result, we will prove two partial results instead:
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Figure 2.1: Spectral Radius

1. r(A) ≤ lim inf ∥An∥1/n
2. r(A) ≥ lim sup ∥An∥1/n.

Since lim inf ≤ lim sup, these two partial results will yield

r(A) = lim inf ∥An∥1/n = lim sup ∥An∥1/n = lim ∥An∥1/n.

Somehow, it is usually easier to establish an upper bound than to establish a lower bound. This
is the case here as well.

(1) Suppose λ ∈ σ(A). Since

An − λnI = (A− λI)(An−1 +An−2λ+ · · ·+ λn−1I)

and operators on the right-hand side of the above equation commute, knowing that (A − λI)
is not invertible implies that (An − λnI) is not invertible either, which means λn ∈ σ(An).
Therefore, given

r(A) = sup{|λ| : λ ∈ σ(A)},

we have

r(A)n = [sup{|λ| : λ ∈ σ(A)}]n

= sup{|λ|n : λ ∈ σ(A)} since xn is monotone for x > 0

= sup{|λn| : λ ∈ σ(A)} ≤ sup{|µ| : µ ∈ σ(An)}
= r(An) ≤ ∥An∥.

Thus, r(A) ≤ ∥An∥1/n, and taking the lim inf on both sides yields the desired partial result.

(2) Suppose we pick some λ outside the ∥A∥-radius open ball, i.e. |λ| > ∥A∥. Then, λ ∈ ρ(A),
and we have

R(A;λ) = (A− λI)−1 = (−λ)−1(I −A/λ)−1 = −
∞∑

n=0

An

λn+1
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where the last equality is due to the first perturbation lemma, Lemma 1.18, as ∥A/λ∥ < 1 by
construction.

Let x ∈ X and g ∈ X∗, and we consider the scalar valued function f(λ) = g(R(A;λ)x). We
know that f(λ) is holomorphic for |λ| > r(A) as R(A;λ) is defined for λ ∈ ρ(A). If ∥λ| ≥ ∥A∥,
we know from the derivation above that

f(λ) = g(R(A;λ)x) = g

(
−

∞∑
n=0

Anx

λn+1

)
= −

∞∑
n=0

λ−n−1g(Anx).

By Laurent’s theorem, since f is holomorphic for |λ| > r(A), the above decomposition thus holds
for all |λ| > r(A).

Now, take λ = aeiθ where a is just slightly greater than r(A). We have

f(aeiθ) = −
∞∑

n=0

a−n−1e−iθ(n+1)g(Anx).

We then multiply the above equation by am+1eiθ(m+1) for some fixed m ∈ N, and we get

am+1eiθ(m+1)f(aeiθ) = −
∞∑

n=0

am−neiθ(m−n)g(Anx).

Integrate the above equation from 0 to 2π with regards to θ yields∫ 2π

0

am+1eiθ(m+1)f(aeiθ) dθ =

∫ 2π

0

−
∞∑

n=0

am−neiθ(m−n)g(Anx) dθ

= −
∞∑

n=0

am−ng(Anx)

∫ 2π

0

eiθ(m−n) dθ

= −2π

∞∑
n=0

g(Anx),

since the integral
∫ 2π

0
eiθ(m−n) dθ is only non-zero, and takes 2π instead, when m = n, so we just

set our fixed m to be n.

Thus, we have

|g(Amx)| =
∣∣∣∣− 1

2π
am+1

∫ 2π

0

eiθ(m+1)f(aeiθ)

∣∣∣∣
=

∣∣∣∣− 1

2π
am+1

∫ 2π

0

eiθ(m+1)g
(
R(A; aeiθ)x

)
dθ

∣∣∣∣
≤ am+1

2π

∣∣∣∣∫ 2π

0

eiθ(m+1)g
(
R(A; aeiθ)x

)
dθ

∣∣∣∣
≤ am+1

2π

∫ 2π

0

∣∣∣eiθ(m+1)g
(
R(A; aeiθ)x

)∣∣∣ dθ

=
am+1

2π

∫ 2π

0

∣∣g (R(A; aeiθ)x
)∣∣ dθ

≤ am+1

2π
∥g∥ · ∥x∥

∫ 2π

0

∥∥R(A; aeiθ)
∥∥ dθ.
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We denote M(a) := sup0≤θ≤2π ∥R(A; aeiθ)∥, and that means

|g(Amx)| ≤ am+1∥g∥ · ∥x∥M(a).

We can pick, using Lemma 2.9, a good functional g ∈ X∗ such that ∥g∥ = 1 and g(Amx) =
∥Amx∥. So, we have

∥Amx∥ ≤ am+1∥x∥M(a) ⇐⇒ sup
x̸=0

∥Amx∥
∥x∥

≤ am+1M(a),

and this means ∥Am∥ ≤ am+1M(a) and ∥Am∥1/m ≤ a · a1/mM(a)1/m. Taking the lim sup for m
on both sides of the inequality will yield

lim sup ∥Am∥1/m ≤ lim sup a · a1/mM(a)1/m = a.

Since the argument above is valid for any a > r(A), we would have

lim sup ∥Am∥1/m ≤ r(A),

as desired.

2.5 Spectral Mapping Theorem

We would like to know if the spectrum of a function of an operator is the function of the spectrum
of the operator, i.e. for some operator A, we would want to know if σ(f(A)) = f(σ(A)) holds.
Turns out, this holds when f is a polynomial. We do not really have similar results for other
classes of functions, and it becomes more case-specific for those scenarios.

Let p(ζ) =
∑N

k=0 akζ
k be a polynomial with the non-zero leading term aN ̸= 0. Let A be a

bounded operator A ∈ B(X) with X being a Banach space. Then, we can define a polynomial
of this operator as

p(A) =

N∑
k=0

akA
k

where Ak = A ◦A · · · ◦A and A0 = I.

Theorem 2.13 (Spectral Mapping Theorem). For A ∈ B(X) and p(ζ) a polynomial , we have

σ(p(A)) = p(σ(A)) = {p(ζ) | ζ ∈ σ(A)}.

Proof. Take µ ∈ C and solve for p(ζ) = µ. This has N roots as p is a degree N polynomial. Let
λ1, λ2, · · · , λN ∈ C be the roots of p(ζ) = µ, counting multiplicity. Then, we have

p(ζ)− µ = (ζ − λ1)(ζ − λ2) · · · (ζ − λN )

and
p(A)− µ = (A− λ1I)(A− λ2I) · · · (a− λNI).

We should note that the terms on the right of the above equation commute.

Notice that we then have the following equivalent results: µ ̸= σ(A) ⇐⇒ p(A) − µI is not
invertible ⇐⇒ (A− λkI) is invertible for all k ⇐⇒ λk /∈ σ(A) for all k ⇐⇒ µ /∈ p(σ(A)).

This marks the end of the abstract theory of the spectrum of operators.
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Chapter 3

Projections and Compact
Operators

3.1 Projection

We will study two specific types of operators. In this section, we will study projections, and in
the next section, we will study compact operators. Let us start by defining what a projection is.

Definition 3.1. Let X be a normed space. An operator P ∈ B(X) is a projection if P 2 = P .

Lemma 3.2. Let P ∈ B(X) be a projection. Then, Q = I − P is also a projection, PQ = 0 =
QP , and Ran(P ) = Ker(Q) and Ran(Q) = Ker(P ).

Proof. Notice that Q2 = (I − P )2 = I − 2P + P 2 = I − P = Q, so Q is a projection. Also,
PQ = P (I − P ) = P − P 2 = 0, and also QP = (I − P )P = P − P 2 = 0.

Finally, since QP = 0, Q maps the range of P into 0, so the kernel of Q contains the range of
P . Next, for some x ∈ Ker(Q), 0 = Qx = (I − P )x = x − Px, meaning that Px = x so x is in
the range of P . Thus, Ran(P ) = Ker(Q). For the other property, it is similar. From PQ = 0,
we know that Ran(Q) ⊆ Ker(P ). For x ∈ Ker(P ), we have 0 = −Px = (I − P )x− x = Qx− x,
so Qx = x and x ∈ Ran(Q). Thus, Ran(Q) = Ker(P ).

Lemma 3.3. Let P ∈ B(X) be a projection. Then, Ran(P ) is closed and X = Ran(P )
⊕

Ker(P ).

Remark. One way to define projection in linear algebra is to say that we can express the space
X as a direct sum of V1 and V2, and the projection will map any x ∈ X to its corresponding
component in either V1 or V2 (same subspace for the same projection). This lemma aims to show
that the present definition of projection satisfies this linear algebra definition as well.

Proof. We set Q = I − P , and from the previous lemma, we know that Ran(P ) = Ker(Q). The
kernel of a bounded operator is closed, so Ran(P ) is closed. Next, we know that I = (I−P )+P ,
so for any x ∈ X, we have x = Qx + Px, with Qx ∈ Ker(P ) and Px ∈ Ran(P ). This means
we can decompose any element of X into the sum of elements from Ran(P ) and Ker(P ). So,
X = Ran(P ) +Ker(P ). To show this decomposition is unique, we just need to show in addition
that the intersection of these two subspaces only contains 0.
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Suppose x ∈ Ran(P ). Then, it means that there is some y ∈ X such that Py = x, which means
that P 2y = Px = Py = x. Furthermore, if we also have x ∈ Ker(P ), Px = 0 = x, which means
the intersection Ran(P ) ∩Ker(P ) = {0}, as desired.

Next, we would like to know about the spectrum of a projection. There are two trivial projections
- zero operator and identity operator. It is easy to note that the spectrum of the zero operator is
0 and that of the identity operator is 1. We would like to study the spectrum of, thus, non-trivial
projections.

Theorem 3.4. Let P ∈ B(X) be a projection, and P is a non-trivial projection (so neither zero
nor identity). Then, σ(P ) = {0, 1}.

Proof. For projection P , we know that P 2 −P = 0. So, using the spectral mapping theorem, we
have σ(P 2 − P ) = σ(0) = 0 = σ(P )2 − σ(P ) = {ζ2 − ζ | ζ ∈ σ(P )}. So, if ζ ∈ σ(P ), ζ = 0 or 1.
This means the spectrum of P could only contain 0 and 1. Next, we would like to show if these
two are really contained in the spectrum.

Since P ̸= 0, we have Ran(P ) = Ker(I − P ) ̸= {0}, meaning that I − P is not invertible, so
1 ∈ σ(P ).

Similarly, since P ̸= I which means I − P ̸= 0, we have Ran(I − P ) = Ker(P ) ̸= {0}, meaning
that P is not invertible, so 0 ∈ σ(P ).

Thus, σ(P ) = {0, 1}, as desired.

3.2 Compact Operator

Definition 3.5. Let X be a normed space, and K ⊆ X.

1. K is relatively compact if each sequence in K has a Cauchy subsequence.
2. K is compact if every sequence in K has a converging subsequence.

Proposition 3.6. If a subset K ⊂ X is compact, then it is closed and bounded. If a subset
K ⊂ X is relatively compact, then it is bounded. If X is finite-dimensional, then the converse of
the previous two statements is also true.

The converse of the two statements does not hold for infinite-dimensional X.

Example. Consider X = l1 and a sequence {xn} in X with xn = en = (0, 0, . . . , 1, 0, . . .) with 1
being the n-th element. It is easy to notice that {xn} ⊂ Bc(0, 1) so it is closed and bounded, yet
this sequence is not Cauchy as d(xn, xm) = 2 for all n ̸= m. This means Bc(0, 1) is not relatively
compact in l1, although being closed and bounded.

Proposition 3.7. Let X be finite-dimensional, and ∥ · ∥1 and ∥ · ∥2 be two norms on X. Then,
these two norms are equivalent, i.e. there exists constants c1, c2 > 0 such that c1∥x∥1 ≤ ∥x∥2 ≤
c2∥x∥1 for all x ∈ X.

Lemma 3.8. Let X be a normed space and X0 be a linear finite-dimensional subspace of X.
Then, X0 is closed.

Proof. Let {e1, e2, . . . , en} be a basis ofX0. Define a norm ∥·∥0 onX0 such that if x =
∑n

j=1 ajej ,
then ∥x∥0 = supj |aj |. By the previous proposition, we know that ∥ · ∥0 is equivalent to the norm
∥ · ∥X , which is the norm of X restricted to X0.
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Suppose we have a sequence {xm} inX0 with xm =
∑n

j=1 a
m
j ej form = 1, 2, . . . that is converging

in ∥ · ∥X to some x ∈ X. Then, {xm} is a Cauchy sequence in ∥ · ∥X , so it is also Cauchy in ∥ · ∥0
as these two norms are equivalent in X0. Thus, it means that, for each j = 1, 2, . . . , n, {amj }∞m=1

is Cauchy, and it converges as amj ∈ F and F is complete. So, amj → aj as m → ∞ for some aj .

We define y :=
∑n

j=1 ajej ∈ X0. Notice that ∥xm − y∥0 → 0 as m → ∞ by the construct of y.
Since the two norms ∥ · ∥0 and ∥ · ∥X are equivalent, we have ∥xm − y∥X → 0 as m → ∞ as well,
so x = y ∈ X0. Thus, X0 is closed, as desired.

Now we are ready to define what a compact operator is.

Definition 3.9. Let X and Y be normed space. A linear operator T : X → Y is a compact
operator if it maps bounded sets of X to relatively compact sets of Y . We denote the collection
of all such operators by Com(X,Y ), and Com(X) := Com(X,X). Clearly, since every relatively
compact set is bounded, we have Com(X,Y ) ⊆ B(X,Y ).

Lemma 3.10. An operator T : X → Y is compact if and only if T (Bc(0, 1)) is relatively compact
in Y .

Proof. The forward direction is trivially true by the definition of a compact operator. For the
backward direction, we first notice that the scaling of values of a sequence does not affect its
Cauchy-ness. So, if T (Bc(0, 1)) is relatively compact, T (Bc(0, r)) is relatively compact as well
for any r > 0. Also, a translation will not affect the Cauchy-ness as well. Furthermore, we notice
that every bounded set is the subset of a large enough closed ball, so it will be mapped to a
relatively compact set after T , as desired.

Theorem 3.11. Let X,Y, Z be normed spaces.

1. If T1, T2 ∈ Com(X,Y ), α, β ∈ F, then αT1 + βT2 ∈ Com(X,Y ).
2. If A is bounded, T is compact, then both AT and TA are compact when the products make

sense.
3. If Tn ∈ Com(X,Y ) for all n, and ∥Tn − T∥ → 0 as n → ∞, then T ∈ Com(X,Y ).

Proof. (1) Consider a sequence {xn} with xn ∈ Bc(0, 1) ⊂ X. Since T1 is compact, there exists

a subsequence {x(1)
n } of {xn} such that {T1x

(1)
n } is Cauchy. Since T2 is compact, there exists a

(sub)subsequence {x(2)
n } of {x(1)

n } such that {T2x
(2)
n } is Cauchy. This then means {αT1x

(2)
n +

βT2x
(2)
n } is Cauchy, so αT1 + βT2 ∈ Com(X,Y ).

(2) We will use the closed ball version of the compact operator definition. (TA)(Bc(0, 1)) =
T (A(Bc(0, 1))). Since A is bounded, A(Bc(0, 1)) is bounded, so T (A(Bc(0, 1))) is relatively
compact. Thus, TA is compact. Next, (AT )(Bc(0, 1)) = A(T (Bc(0, 1))). T (Bc(0, 1)) is relatively
compact, and A is bounded so every Cauchy sequence will still be Cauchy after the map, so
A(T (Bc(0, 1))) is relatively compact. Thus, AT is compact as well.

(3) Let {xn} be a sequence with xn ∈ Bc(0, 1), i.e. ∥xn∥ ≤ 1. Since T1 is compact, there exists

subsequence {x(1)
n } of {xn} such that {T1x

(1)
n } is Cauchy. Since T2 is compact, there exists

subsequence {x(2)
n } of {x(1)

n } such that {T2x
(2)
n } is Cauchy. . . . Since Tm is compact, there exists

subsequence {x(m)
n } of {x(m−1)

n } such that {Tmx
(m)
n } is Cauchy.

Let yn := x
(n)
n . Then, {yn} is a subsequence of {xn}.
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For each m, {Tmyn}∞n=1 is Cauchy. To see this, we notice that {yn}∞n=m = {x(n)
n }∞n=m is a

subsequence of {x(m)
n }∞n=1, so {Tmyn}∞n=m is Cauchy and thus {Tmyn}∞n=1 is Cauchy as well.

We also know that {Tyn}∞n=1 is Cauchy. To see this, we first fix some ε > 0. Since ∥T −Tm∥ → 0
asm → ∞, there exists someM > 0 such that ∥T−TM∥ < ε/3. Since {TMyn} is Cauchy as shown
above, there exists some N > 0 such that for all n1, n2 > N , we have ∥TMyn1 − TMyn2∥ < ε/3.
Then, we have, for n1, n2 > N , there is

∥Tyn1 − Tyn2∥ ≤ ∥Tyn1 − Tmyn1∥+ ∥ − Tyn2 + Tmyn2∥+ ∥Tmyn1 − Tmyn2∥

< ∥T − Tm∥ · ∥yn1∥+ ∥T − Tm∥ · ∥yn2∥+
ε

3

≤ ε

3
+

ε

3
+

ε

3
= ε.

So {Tyn}∞n=1 is Cauchy.

Thus, we have shown that T is compact.

Remark. Part 1 of the theorem indicates that Com(X) is a linear subspace of B(X). Part 2 of
the theorem indicates that Com(X) is an ideal in B(X). Part 3 of the theorem indicates that
Com(X) is closed. Thus, Com(X) is a closed ideal of B(X). In fact, any closed ideal of B(X) is
a subset of Com(X).

Definition 3.12. We say that T ∈ B(X,Y ) is a finite dimensional, or finite rank, operator
if Ran(T ) is finite-dimensional. Then, T ∈ Com(X,Y ), since T (Bc(0, 1)) is closed so it is also
relatively compact as it is finite-dimensional.

Let us consider an example.

Example. For X = C([0, 1]), and k = k(s, t) ∈ C([0, 1]× [0, 1]). Define T : X → X by

(Tf)(t) :=

∫ 1

0

k(s, t)f(s) ds.

This T is compact. To see this, we first notice that it is bounded, as ∥T∥ ≤ sups,t ∥k(s, t)∥. Next,
we construct

(Tnf)(t) :=

∫ 1

0

kn(s, t)f(s) ds.

If Tnf is of finite rank which makes Tn compact as it is bounded, and kn → k so ∥Tn − T∥ → 0,
then by part 3 of Theorem 3.11, T is compact.

We will set kn(s, t) :=
∑N1

j=0

∑N2

l=0 ajls
jtl for some N1, N2, ajl that depend on n. By Weierstrass

approximation theorem, this will converge to k(s, t). Using this kn, we have

(Tnf)(t) :=

∫ 1

0

N1∑
j=0

N2∑
l=0

ajls
jtlf(s) ds =

N2∑
l=0

tl

∫ 1

0

N1∑
j=0

ajls
jf(s) ds


which is a polynomial of degree N2, and it is in the span of {1, t, t2, . . . , tN2}. So, Tnf is a
finite-dimensional operator.

Thus, T is compact, as desired.
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Lemma 3.13 (Almost Orthogonality Lemma). Let X be a normed space and X0 ⊂ X be a
closed linear subspace of X with X0 ̸= X. Then, for each ε > 0, there exists z ∈ X\X0 such that
∥z∥ = 1 and d(z,X0) ≥ 1− ε, i.e. ∥z − x∥ ≥ 1− ε for all x ∈ X0.

Proof. The result is trivial for ε ≥ 1 as the metric is non-negative. Consider 0 < ε < 1. Since
X0 ̸= X, there exists x1 ∈ X\X0. Since X0 is closed, we let d := d(x1, X0) = infx∈X0 ∥x1−x∥ >
0. Notice that for the given ε, we have d/(1 − ε) > d, so there exists some y ∈ X0 such that
∥x1 − y∥ ≤ d/(1− ε) (if this claim is not true then there would be a contradiction with d being
the infimum). Let z := (x1 − y)/∥x1 − y∥, so ∥z∥ = 1. Let x ∈ X0, then

∥z − x∥ =

∥∥∥∥ x1 − y

∥x1 − y∥
− x

∥∥∥∥
=

1

∥x1 − y∥
· ∥x1 − y − x · ∥x1 − y∥∥

≥ 1− ε

d
∥x1 − (y + x · ∥x1 − y∥)∥

≥ 1− ε

d
· d = 1− ε

where the last inequality is due to the face that y+x · ∥x1− y∥ is in X0 as both x and y are.

Remark. If we are in Hilbert space, we would be able to have the concept of full orthogonality.
Here, since we are only in Banach space, this approximate result is the best of what we can
obtain, which is already very helpful.

Lemma 3.14. Let X be infinite-dimensional. Then BC(0, 1) ⊂ X is not relatively compact.

Proof. Take x1 ∈ X such that ∥x1∥ = 1, and we put X1 = span{x1}. Then, dimX1 = 1 so
X1 ̸= X. Also, X1 is closed since it is a finite-dimensional span. By almost orthogonality
lemma, there exists some x2 ∈ X\X1 such that ∥x2∥ = 1 and d(x2, X1) ≥ 1 − 1/2 = 1/2 (take
ε = 1/2), i.e. d(x2, x) ≥ 1/2 for all x ∈ X1. In particular, we have d(x2, x1) ≥ 1/2. Put
X2 = span{x1, x2}, and repeat this procedure to obtain x3 and X3, x4 and X4, etc. This gives
us a sequence {xn} such that xn ∈ BC(0, 1) for all n yet d(xn, xm) ≥ 1/2 for all n ̸= m, so this
sequence has no Cauchy subsequence, and thus BC(0, 1) is not relatively compact.

Corollary 3.15. The identity operator in X is compact ⇐⇒ X is finite-dimensional.

Theorem 3.16. Let X be an infinite-dimensional Banach space and T ∈ Com(X). T is not
invertible.

Proof. If T is invertible, then T−1 exists and T−1 is bounded by Banach inverse mapping theorem.
T ·T−1 is compact as T is compact and T−1 is bounded. However, since identity is not compact
for infinite-dimensional X, we have a contradiction, so T is not invertible.

Corollary 3.17. Let X be an infinite-dimensional Banach space and T ∈ Com(X). Then
0 ∈ σ(T ).

In the following, we will always let X be an infinite-dimensional Banach space and T ∈ Com(X).

Theorem 3.18. Let T ∈ Com(X) and λ ̸= 0 is an eigenvalue of T . Then, the geometric
multiplicity of λ is finite, i.e. dimXλ < ∞ where Xλ := {x ∈ X|Tx = λx}.
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Proof. T |Xλ
= λI|Xλ

is compact as it is the restriction of a compact operator to a closed
subspace. So dimXλ is finite as it would not be compact if it is infinite-dimensional, since
infinite-dimensional identity is not compact.

Lemma 3.19. Let T ∈ Com(X), λ ̸= 0. If λ is not an eigenvalue, then there exists c > 0 such
that ∥(T − λI)x∥ ≥ c∥x∥ for all x ∈ X.

Proof. Suppose not. Then, for c = 1/k, there exists xk ∈ X such that ∥(T − λI)xk∥ < ∥xk∥/k.
Put zk = xk/∥xk∥, then ∥zk∥ = 1 and ∥(T − λI)zk∥ < 1/k, so limk→∞ |(T − λI)zk∥ = 0. Since
T is compact, there is a subsequence {zkj

} of {zk} such that Tzkj
is Cauchy, so it converges to

z := limTzkj
as X is Banach. Then,

zkj =
1

λ
[Tzkj − (T − λI)zkj ] →

z

λ
=: z′.

Then, ∥z′∥ = 1. Also,

∥(T − λI)z′∥ = ∥(T − λI) lim zkj
∥ = ∥ lim(T − λI)zkj

∥ = 0,

so λ is an eigenvalue with eigenvector z′. We have a contradiction.

Theorem 3.20. Let X be a Banach space and A ∈ B(X) such that there exists c > 0 with
∥Ax∥ ≥ c∥x∥ for all x ∈ X. Then Ker(A) = {0} and Ran(A) is closed.

Proof. If Ker(A) ̸= {0}, then there exists some x ̸= 0 and x ∈ Ker(A) such that ∥Ax∥ = 0 yet
we also have ∥Ax∥ ≥ c∥x∥ > 0. Contradiction. So Ker(A) = {0}.

Suppose y ∈ Ran(A), i.e. there exists a sequence {yk} in Ran(A) with yk → y and y ∈ Ran(A).
So, yk ∈ Ran(A) implies there exists xk ∈ X such that yk = Axk. As ∥Ax∥ ≥ c∥x∥, we have

∥xn − xm∥ ≤ ∥A(xn − xm)∥/c = ∥yn − ym∥/c → 0

as n,m → ∞, so {xn} is Cauchy. So, Ax = A(limxn) = lim(Axn) = lim yn = y, so y ∈ Ran(A),
and Ran(A) is thus closed.

Corollary 3.21. Let X be a Banach space and A ∈ B(X) such that there exists c > 0 with
∥Ax∥ ≥ c∥x∥ for all x ∈ X. Then, for all n ∈ N, Ker(An) = {0} and RanAn is closed.

Proof. ∥Anx∥ ≥ c∥An−1x∥ ≥ cn∥x∥ for all x ∈ X. cn is just some constant, so we would obtain
the desired result by applying the previous theorem.

Theorem 3.22. Let X be a Banach space, T ∈ Com(X), λ ̸= 0, and λ is not an eigenvalue.
Then (T − λI) is invertible, and λ /∈ σ(T ).

Proof. Put X0 := X, and Xn := Ran((T − λI)n) for n ∈ N. Xn is closed for all n from lemma
and corollary above. Also,

Xn+1 = (T − λI)n+1X = (T − λI)[(T − λI)nx] = (T − λI)Xn

= (T − λI)n[(T − λI)x] = (T − λI)nX1.

Thus, Xn+1 ⊆ Xn.
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The desired results will follow trivially if we have the following two claims: (1) there exists n such
that Xn+1 = Xn, (2) the minimum k ∈ N such that Xk = Xk+1 is 0. With these two results,
we would have X0 = X1 = Ran(T − λI) and (T − λI) has a trivial kernel, so it is invertible and
λ /∈ σ(T ). Let us prove these two claims one by one.

(1) Suppose not, i.e. Xn+1 ̸= Xn for all possible n. Then, by almost orthogonality lemma, there
exist some xn ∈ Xn\Xn+1 such that ∥xn∥ = 1 and ∥xn − z∥ ≥ 1/2 for all z ∈ Xn+1. If m > n,
then

∥Txn − Txm∥ = ∥(T − λI)(xm − xn) + λI(xm − xn)∥

= |λ| ·
∥∥∥∥T − λI

λ
(xm − xn) + xm − xn

∥∥∥∥
= |λ| · ∥(something in Xn+1)− xn∥
≥ |λ|/2.

Notice that the last equality is because the first term in the norm is T − λI applied to some
element of Xn, so it is in Xn+1, and xm is in Xn+1 as m > n. So, {Txn} has no Cauchy
subsequence, so T is not compact which is a contradiction. Thus, this claim is shown.

As a consequence of this claim, we should note that if Xn+1 = Xn for some n, then Xn = Xn+1 =
Xn+2 = · · · , as Xn+2 = (T − λI)Xn+1 = (T − λI)Xn = Xn+1 = Xn.

(2) Suppose not. Then, Xk−1 exists, and we have Xk−1 ̸= Xk = Xk+1. Take some x ∈ Xk−1\Xk.
Then (T − λI)x ∈ Xk = Xk+1, so there exists y ∈ Xk such that (T − λI)x = (T − λI)y =⇒
(T − λI)(x− y) = 0. Since x /∈ Xk yet y ∈ Xk, we have x− y ̸= 0, so λ is an eigenvalue, which
is a contradiction.

Corollary 3.23. Every non-zero point of σ(T ) with T ∈ Com(X) is an eigenvalue of T .

Theorem 3.24. Let X be a Banach space and T ∈ Com(X). Then, σ(T ) is at most countable,
and the only possible accumulation point is the origin.

Proof. We will prove that σ(T ) ∩ {λ ∈ C | |λ| > δ} is finite for any δ > 0. This is equivalent to
the desired result.

Suppose not. Fix some δ, so there exists countably many distinct λ1, λ2, . . . ∈ σ(T ) such that
|λj | > δ. Since λj ̸= 0, by Theorem 3.22, we know that λj ∈ σp(T ), so there exists some
corresponding eigenvector xj such that Txj = λjxj .

Put Xn = span{x1, x2, . . . , xn} and dimXn = n. So, we have X1 ⊂ X2 ⊂ · · · , and they are
proper subsets. Notice that by our definition, we have TXn ⊆ Xn and (T −λnI)Xn ⊆ Xn−1. In
fact, we have equalities for these two statements.

By almost orthogonality lemma, there exists some yn ∈ Xn such that ∥yn∥ = 1 and ∥yn−x∥ ≥ 1/2
for all x ∈ Xn−1. Let n > m, and we have

∥Tyn − Tym∥ = ∥λnyn + (T − λn)yn − Tym∥

=

∥∥∥∥λn

[
yn − 1

λn
[−(T − λn)yn + Tym]

]∥∥∥∥
≥ 1

2
∥λn∥ >

1

2
δ.
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The first inequality above uses almost orthogonal lemma, as (T − λn)yn ∈ Xn−1 and Tym ∈
Xm ⊂ Xn−1. So, {Tyn} has no Cauchy subsequence and yn ∈ BC(0, 1), so T /∈ Com(X). A
contradiction.

Lemma 3.25. Let T ∈ Com(X,Y ), then T ∗ ∈ Com(Y ∗, X∗).
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Chapter 4

Spectrum Theory in Hilbert
Spaces

4.1 Hilbert Space Basics

We will cover basic definitions and results of Hilbert space theory that we will use later without
proof. We will usually use H to denote some Hilbert space.

Definition 4.1. A system {xα}α∈J is called orthogonal if xα⊥xβ for α ̸= β, where xα⊥xβ ⇐⇒
(xα, xβ) = 0. It is orthonormal if ∥xα∥ = (xα, xα) = 1 for all α ∈ J .

Theorem 4.2 (Pythagoras Theorem). If {xj}nj=1 is orthogonal, then∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
2

=

n∑
j=1

∥xj∥2 .

Theorem 4.3 (Polarisation Identity). For any x, y ∈ H with Hilbert space H, we have

4(x, y) = ∥x+ y∥2 − ∥x− y∥2 if F = R,
4(x, y) = ∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2 if F = C.

Theorem 4.4 (Parallelogram Law). For any x, y ∈ H with Hilbert space H, we have

2(∥x∥2 + ∥y∥2) = ∥x+ y∥2 + ∥x− y∥2.

Theorem 4.5 (Jordon-von Neumann Theorem). If a Banach space satisfies the parallelogram
law, then it is a Hilbert space and the inner product is defined via polarisation identity.

Theorem 4.6. Let L be a closed linear subspace of Hilbert space H, and x ∈ H. Then, there
exists unique y ∈ L such that ∥x− y∥ = infz∈L ∥x− z∥ = d(x, L) and (x− y, z) = 0 for all z ∈ L.

Definition 4.7. Let M ⊆ H be a set. The orthogonal complement to M is the set M⊥ :=
{x ∈ H | (x, y) = 0 ∀y ∈ M}.
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Theorem 4.8. For a Hilbert space H,

1. M⊥ is a closed linear subspace of H.
2. M1 ⊆ M2 =⇒ M⊥

2 ⊆ M⊥
1 .

3. M ⊆ M⊥⊥. Moreover, M⊥⊥ = span{M}.
4. Let M be a linear subspace of H, then M⊥ = {0} ⇐⇒ M is dense in H.

Theorem 4.9. If M is a closed linear subspace of H, then H = M +
·
M⊥.

Remark. Notice that we will use +
·
to denote the direct sum and

⊕
to denote the orthogonal

sum.

Let {eα}α∈J be an orthonormal set. For x ∈ H, we call (x, eα) a Fourier coefficient of x.

Theorem 4.10 (Bessell Inequality).

∥x∥2 ≥
∑
α∈J

(x, eα)
2.

Theorem 4.11. The following are equivalent:

1. (Parseval Identity) For all x ∈ H, ∥x∥2 =
∑

(x, eα)
2.

2. (Fourier Expansion) For all x ∈ H, ∥x∥2 =
∑

(x, eα)eα.
3. x = 0 ⇐⇒ (x, eα) = 0 for all α ∈ J .
4. span({eα}) is dense in H.

Then, we say the orthonormal system {eα}α∈J is complete in H.

Theorem 4.12 (Riesz Representation Theorem). Let f ∈ H∗ for some Hilbert space H. Then,
there exists a unique z ∈ H such that f(x) = (x, z) for all x ∈ H, and ∥f∥H∗ = ∥z∥.

Definition 4.13. Let A ∈ B(H). Then there exists unique operator A∗ ∈ B(H) such that
(Ax, y) = (x,A∗y) for all x, y ∈ H. We will call A∗ the adjoint of A.

Now, we will state some properties of adjoint.

Theorem 4.14. Let A,A1, A2 ∈ B(H) and A∗, A∗
1, A

∗
2 be adjoints of A,A1, A2 respectively. We

have

1. (αA1 + βA2)
∗ = ᾱA∗

1 + β̄A∗
2 for all α, β ∈ F.

2. (AB)∗ = B∗A∗.
3. (A∗)∗ = A.
4. ∥A∗∥ = ∥A∥.
5. ∥A∗A∥ = ∥A∥2.
6. If A−1 exists, then (A∗)−1 also exists, and (A∗)−1 = (A−1)∗.

Theorem 4.15. Consider A ∈ B(H). Then, Ker(A∗) = Ran(A)⊥ and Ker(A) = Ran(A∗)⊥.

Corollary 4.16. Consider A ∈ B(H). Then, Ker(A∗)⊥ = Ran(A) and Ker(A)⊥ = Ran(A∗).

Definition 4.17. Consider A ∈ B(H).

1. A is normal if A∗A = AA∗.
2. A is symmetric or self-adjoint if A∗ = A, i.e. (Ax, y) = (x,Ay) for all x, y ∈ H.
3. A is unitary if AA∗ = A∗A = I, i.e. A∗ = A−1.
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Remark. It is the same for a bounded operator to be symmetric and to be self-adjoint, yet it
might not be the case for unbounded operators.

From the definition, we have the following simple result.

Proposition 4.18. A self-adjoint operator is normal, and an unitary operator is also normal.

4.2 Unbounded Operators and Their Adjoints*

Here, we will be looking at unbounded operators and their adjoints. They will be discussed
informally, and they are not examinable. The only reason for bringing them up is that a lot of
interesting examples of operators and their adjoints arise only for unbounded operators, such as
the differential operators. It would be a shame and slightly boring to not mention them when
we study spectral theory.

Consider an unbounded operator A : DA → H where H is a Hilbert space and DA is a domain
for A. We will use fA,y(x) to denote the inner product (Ax, y). Suppose that for a given y, we
can represent fA,y(x) = (x, h) for all x ∈ DA for some h, then we say that y ∈ DA∗ and A∗y = h.
This provides us with a definition for the adjoint of an unbounded operator.

The first question we should ask is, is h unique, or is this well-defined? It is. To see this, suppose
there exists h1, h2 such that

(Ax, y) = fA,y(x) = (x, h1) = (x, h2)

for all x ∈ DA. This means we have

(x, h1)− (x, h2) = (x, h1 − h2) = 0

for all x ∈ DA, which means h1 − h2 ∈ D⊥
A . Domain DA is dense in H, so its orthogonal

complement D⊥
A = {0}, and therefore h1 − h2 = 0 =⇒ h1 = h2.

Next question we may ask is what is the relationship between DA and DA∗ . This is very case-
by-case, and we will study these two domains for many examples in the following.

We have mentioned three types of bounded operators in Hilbert spaces - normal, symmetric /
self-adjoint, and unitary. For unbounded operators, we will only be looking at symmetric and
self-adjoint. These two terms mean the same thing in the bounded setting, but different things
in the unbounded setting.

Definition 4.19. Consider an unbounded operator A : DA → H.

1. A is symmetric if (Ax, y) = (x,Ay) for all x, y ∈ DA.
2. A is self-adjoint if A∗ = A, and in particular DA∗ = DA.

Remark. It can be observed that A is self-adjoint implies that A is symmetric. However, if A is
symmetric, it implies that DA∗ ⊇ DA and A∗|DA

= A|DA
.

Definition 4.20. For an operator A on a Hilbert space, the quadratic form of A is QA : H → F
where QA(x) = (Ax, x).

Next, we will study (a lot of) examples of unbounded operators.

1) ConsiderH = L2(R) andAf := f ′ with domainDA = {f ∈ L2, f ′ ∈ L2} = H1(R) = W 1,2(R).
Here, H1 and W 1,2 are two notations for Sobolev spaces. The superscript of H is to denote that
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it contains those with first derivatives, whereas the superscripts for W denote it contains the
first derivatives for the first number, and it is a L2 space for the second number.

We claim that f ∈ H1(R) =⇒ limx→±∞ f(x) = 0.

Using integration by parts, we have

(Af, g) =

∫ ∞

−∞
f ′g = −

∫ ∞

−∞
fg′ + [fg]∞−∞ = −

∫ ∞

−∞
fg′ = −(f,Ag).

So, DA∗ ⊇ DA, and A∗|DA
= A|DA

. In fact, DA∗ = DA. This, however, is slightly awkward as
A∗ = −A, so it is not exactly self-adjoint.

2) Consider H = L2(R) and Af := if ′ with domain DA = H1(R). We have

(Af, g) =

∫ ∞

−∞
if ′g = −i

∫ ∞

−∞
fg′ =

∫ ∞

−∞
fig′ = (f,Ag).

So, A∗ = A.

3) Consider H = L2([0, 1]) and Af := if ′ with domain DA = H1([0, 1]). We have

(Af, g) =

∫ 1

0

if ′g =

∫ 1

0

fig′ + [ifg]10 = (f,Ag) + if(1)g(1)− if(0)g(0).

We would want the boundary terms to cancel out, so we have the following domain for adjoint,
DA∗ = {g ∈ H1([0, 1]), g(0) = g(1) = 0}.

4) Consider H = L2([0, 1]) and Af := if ′ with domain DA = {f ∈ H1([0, 1]), f(0) = f(1) = 0}.
Then, DA∗ = H1([0, 1]).

5) Consider H = L2([0, 1]) and Af := if ′ with domain DA = {f ∈ H1([0, 1]), f(0) = 0}. Then,
DA∗ = {g ∈ H1([0, 1]), g(1) = 0} ≠ DA.

6) Consider H = L2([0, 1]) and Af := if ′ with domain DA = {f ∈ H1([0, 1]), f(0) = f(1)}.
Then, DA∗ = {g ∈ H1([0, 1]), g(0) = g(1)} = DA. So, this A with domain DA is self-adjoint.

7) Consider H = L2([0, 1]) and Af := if ′ with domain DA = {f ∈ H1([0, 1]), f(0) = eiθf(1)}.
Then, DA∗ = {g ∈ H1([0, 1]), g(0) = eiθg(1)} = DA. Here, θ ∈ R is a constant. So, again, this
A with domain DA is self-adjoint.

8) Consider H = L2([0,∞)) and Af := if ′ with domain DA = H1([0,∞)). We have

(Af, g) =

∫ ∞

0

if ′g =

∫ ∞

0

fig′ + [ifg]∞ = (f,Ag)− if(0)g(0).

So, DA∗ = {g ∈ H1, g(0) = 0}. And there is no way we can adjust the domain to make sure that
the operator is self-adjoint.
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9) ConsiderH = L2(R) and Af := −f ′′ with domainDA = {f ∈ L2, f ′′ ∈ L2, f ′ ∈ L2} = H2(R).
We have

(Af, g) =

∫
R
−f ′′g =

∫
R
f ′g′ =

∫
R
f−g′′ = (f,Ag)

So A with this domain is self-adjoint. Notice that it will still be self-adjoint if we have Af := f ′′

with the same domain instead. The extra minus sign is to make sure that its quadratic form is
non-negative.

10) Consider H = L2([0, 1]) and Af := −f ′′ with domain DA = {f ∈ L2, f ′′ ∈ L2, f ′ ∈ L2} =
H2(R). We have

(Af, g) =

∫ 1

0

−f ′′ḡ =

∫ 1

0

f ′ḡ′ + [−f ′g]10

=

∫ 1

0

f−g′′ + [−f ′g]10 + [fg′]10

= (f,Ag)− f ′(1)g(1) + f ′(0)g(0) + f(1)g′(1)− f(0)g′(0)

So, DA∗ = {g ∈ H2, g(0) = g(1) = g′(0) = g′(1) = 0}.

Clearly, there are many ways we can adjust the domains to make the operator self-adjoint.

• (Periodic) f(0) = f(1), f ′(0) = f ′(1).
• (Quasi-Periodic) f(0) = e0θf(1), f ′(0) = e0θf ′(1) for some fixed θ ∈ R.
• (Robin) f(0) = λf ′(0), f(1) = µf ′(1) for some constant λ, µ ∈ R.
• (Dirichlet) f(0) = f(1) = 0.
• (Neumann) f ′(0) = f ′(1) = 0.

11) Consider H = L2(Rd) and Af := −∆f , where ∆ is the Laplacian, with domain DA = {f ∈
L2, ∂αf ∈ L2, ∂α∂βf ∈ L2∀α, β} = H2(Rd). We have

(Af, g) =

∫
Rd

−∆fḡ =

∫
Rd

∇f · ∇g = −
∫
Rd

f∆g,

so DA = DA∗ , A∗ = A, and A is self-adjoint.

12) Consider some region Ω ⊂ Rd with smooth boundary Γ = ∂Ω. H = L2(Ω) and Af := −∆f .
There, DA = H2(Ω). We have, using Green’s theorem,

(Af, g) =

∫
Ω

−∆fg =

∫
Ω

∇f · ∇g −
∫
Γ

∂nf · g = −
∫
Ω

f∆g −
∫
Γ

∂nf · g +
∫
Γ

f · ∂ng.

where ∂n is the derivative in the direction of a normal n of Ω. So, DA∗ = {g ∈ H2(Ω), g|Γ =
0, ∂ng|Γ = 0}. Same as before, we can make adjustments to the domain to make the operator
self-adjoint.

• (Dirichlet) g|Γ = 0.
• (Neumann) ∂ng|Γ = 0.
• (Robin) ∂ng|Γ = λg|Γ for some continuous function λ : Γ → R.
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We have studied three types of operators in Hilbert spaces - normal operators, unitary operators,
and self-adjoint operators. We will extend our study of these types of operators here. But first,
let us recap the definitions of these three kinds of operators.

Definition 4.21. Consider A ∈ B(H).

1. A is normal if A∗A = AA∗.
2. A is symmetric or self-adjoint if A∗ = A, i.e. (Ax, y) = (x,Ay) for all x, y ∈ H.
3. A is unitary if AA∗ = A∗A = I, i.e. A∗ = A−1.

4.3 Normal Operators

Theorem 4.22. Consider A ∈ B(H) where H is a Hilbert space. A is normal if and only if
∥Ax∥ = ∥A∗x∥ for all x ∈ H.

Proof. The forward direction is simple. Since A is normal, we have ∥Ax∥2 = (Ax,Ax) =
(A∗Ax, x) = (AA∗x, x) = (A∗x,A∗x) = ∥A∗x∥2, as desired.

The backward direction is slightly more involved, but simple nonetheless. Suppose ∥Ax∥ = ∥A∗x∥
for all x ∈ H, i.e. (Ax,Ax) = (A∗x,A∗x) for all x. Then, we will use the polarisation identity
of Hilbert space. If F = R, we have 4(Ax,Ay) = (Ax + Ay,Ax + Ay) − (Ax − Ay,Ax − Ay) =
(A∗x+A∗y,A∗x+A∗y)−(A∗x−A∗y,A∗x−A∗y) = 4(A∗x,A∗y), therefore (Ax,Ay) = (A∗x,A∗y)
for all x, y ∈ H. If F = C, it would be a similar story and we would get (Ax,Ay) = (A∗x,A∗y)
for all x, y ∈ H. So, (AA∗x, y) = (A∗Ax, y) and we have ((AA∗ −A∗A)x, y) = 0 for all x, y ∈ H.
If we take y = (AA∗ − A∗A)x and x ̸= 0, we would get AA∗ − A∗A = 0 so A∗A = AA∗, as
desired.

Theorem 4.23. Let A be a normal operator. Then, we have

1. (RanA∗)⊥ = KerA = KerA∗ = (RanA)⊥

2. Ax = λx =⇒ A∗x = λ̄x
3. Given Ax = λ1x,Ay = λ2y. If λ1 ̸= λ2, then (x, y) = 0

Proof. (i) According to the previous theorem, we have ∥Ax∥ = 0 for some x ∈ KerA, and
∥Ax∥ = ∥A∗x∥ = 0 =⇒ x ∈ KerA∗. The other equalities follow from the definition.

(ii) Ax = λx ⇐⇒ x ∈ Ker(A− λI) = Ker[(A− λI)∗] = Ker(A∗ − λ̄I) ⇐⇒ A∗x = λ̄x.

(iii) λ1(x, y) = (λ1x, y) = (Ax, y) = (x,A∗y) = (x, λ2y) = λ2(x, y). Since λ1 ̸= λ2, we have
(x, y) = 0, as desired.

4.4 Unitary Operators

Theorem 4.24. Consider U ∈ B(H), then the following are equivalent:

1. U is unitary
2. (Ux,Uy) = (x, y) for all x, y and RanU = H
3. ∥Ux∥ = ∥x∥ for all x and RanU = H

Proof. (1) =⇒ (2) U is unitary so UU∗ = I and this means RanU = H. Also, (Ux,Uy) =
(U∗Ux, y) = (x, y).
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(2) =⇒ (3) It is obvious if we let y = x.

(3) =⇒ (2) This follows from the polarisation identity.

(2) =⇒ (1) (Ux,Uy) = (x, y) = (U∗Ux, y). So, we have ((U∗U − I)x, y) = 0 which means
U∗U − I = 0 by letting y = (U∗U − I)x and x ̸= 0. So, U∗U = I and U∗ is the left inverse of U .
In addition, since (2) implies (3), we have KerU = {0} as ∥Ux∥ = ∥x∥. So, since RanU = H, U
is invertible, and U∗ = U−1.

Theorem 4.25. If 0 /∈ σ(A), then σ(A−1) = 1/σ(A) = {1/λ|λ ∈ σ(A)}.

Proof. 0 ̸= λ /∈ σ(A) ⇐⇒ (A − λI)−1 exists ⇐⇒ A−1 − λ−1I = A−1λ−1(λI − A) is invertible
⇐⇒ λ−1 /∈ σ(A−1).

Theorem 4.26. Let U be unitary. Then, σ(U) ⊆ {λ ∈ C| |λ| = 1}.

Proof. ∥U∥ = 1, so σ(U) ⊆ BC(0, 1). Additionally, ∥U−1∥ = 1, so σ(U−1) ⊆ BC(0, 1). Using
the previous theorem, we have σ(U) = 1/σ(U−1) = {λ| |λ| ≥ 1}. So, taking the intersection of
these two, we have σ(U) ⊆ {λ ∈ C| |λ| = 1}.

Definition 4.27. Let A,B ∈ B(H). They are unitary equivalent if there exists unitary U
such that A = UBU−1. They are similar if there exists invertible S with S, S−1 ∈ B(H) such
that A = SBS−1.

4.5 Self-Adjoint Operators

Theorem 4.28. We have

1. A is self-adjoint, then λ ∈ R =⇒ λA is self-adjoint.
2. A,B are self-adjoint implies A+B is self-adjoint.
3. A,B are self-adjoint implies AB is self-adjoint if and only if AB = BA.
4. {An} are self-adjoint. ∥An −A∥ → 0 implies A is self-adjoint.

Theorem 4.29. Let F = C and A ∈ B(H). Then A is self-adjoint is equivalent to QA(x) =
(Ax, x) ∈ R for all x ∈ H.

Proof. The forward direction is simple. (Ax, x) = (x,A∗x) = (A∗x, x) = (Ax, x), so Ax, x) ∈ R.

For the backward direction, we have (Ax, x) = (Ax, x) = (x,Ax) = (A∗x, x) for all x as QA(x) ∈
R. This would help us to derive (Ax, y) = (A∗x, y) using the polarisation identity. The derivation
is slightly technical, so we will omit it here. Thus, A = A∗.

Corollary 4.30. If A is self-adjoint, σp(A) ⊆ R.

Proof. Ax = λx =⇒ (Ax, x) = λ∥x∥2 ∈ R by the previous result. Next, as ∥x∥2 is real,
λ ∈ R.

Theorem 4.31. Let P ∈ B(H) and P 2 = P . The following are equivalent:

1. P is self-adjoint.
2. P is normal.
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3. RanP = (KerP )⊥.
4. (Px, x) = ∥Px∥2 for all x ∈ H.

Then, we call P an orthogonal projection.

Proof. (1) =⇒ (2) This is obvious.

(2) =⇒ (3) KerP = KerP ∗ = (RanP )⊥ as P is normal. Thus, (KerP )⊥ = (RanP )⊥⊥ =
RanP = RanP as P is a projection so its range is closed.

(3) =⇒ (1) RanP = (KerP )⊥, so (Px, (I − P )y) = 0 for all x, y ∈ H. Therefore, we have

(Px, y) = (Px, y)− (Px, (I − P )y) = (Px, Py) = (Px, Py) + ((I − P )x, Py) = (x, Py).

So, P = P ∗.

(3) =⇒ (4) From above, we have obtained (Px, y) = (Px, Py). Let y = x, we would have
(Px, x) = (Px, Px) = ∥Px∥2, as desired.

(4) =⇒ (3) Consider F = C. By the previous result, we know that QP (x) ∈ R ⇐⇒ P is
self-adjoint. So, as (Px, x) = ∥Px∥2 ∈ R, P is self-adjoint, and (1) implies (3). Consider F = R,
let x ∈ KerP and y ∈ RanP , set z = x+ y. Now, Pz = Py = y, so

∥Pz∥2 = (Pz, z) ⇐⇒ ∥y∥2 = (y, x) + ∥y∥2 ⇐⇒ (y, x) = 0 ⇐⇒ RanP = (KerP )⊥.

4.6 Numerical Range

Definition 4.32. Let A ∈ B(H), then the numerical range of A, denoted by Num(A), is

Num(A) = {QA(x) = (Ax, x) | ∥x∥ = 1} =

{
(Ax, x)

∥x∥2

∣∣∣∣ x ̸= 0

}
.

Since |(Ax, x)| ≤ ∥Ax∥ · ∥x∥ = ∥Ax∥ ≤ ∥A∥, Num(A) ⊆ BC(0, ∥A∥).

Theorem 4.33. Num(A) is convex.

Theorem 4.34. σ(A) ⊆ Num(A).

We will establish an auxiliary lemma first.

Lemma 4.35. Let A ∈ B(H). Suppose there exists c > 0 such that |(Ax, x)| ≥ c∥x∥2 for all x,
then A−1 exists.

Proof. Using Cauchy-Schwartz and the condition, we have

∥Ax∥∥x∥ ≥ |(Ax, x)| ≥ c∥x∥2 =⇒ ∥Ax∥ ≥ c∥x∥ =⇒ KerA = {0}& RanA is closed.

Suppose x ∈ (RanA)⊥, then (Ax, x) = 0 so x = 0. Thus, (RanA)⊥ = {0} =⇒ RanA is dense in
H =⇒ RanA = H. But RanA is closed, so RanA = H. Thus, A is invertible.

Now we prove the theorem.
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Proof. Suppose λ /∈ Num(A). Take z ∈ H and ∥z∥ = 1, then |((A − λI)z, z)| = |(Az, z) −
λ(z, z)| = |(Az, z) − λ| ≥ c = c∥z∥2 for some constant c > 0, since (Az, z) is in Num(A) and λ
is not in the closure of Num(A). Given this form, we can lift the ∥z∥2 = 1 condition, and get
|((A − λI)z, z)| ≥ c∥z∥2 for all z, so by the previous lemma, (A − λI)−1 exists, and λ /∈ σ(A).
Thus, λ /∈ Num(A). =⇒ λ /∈ σ(A), as desired.

Corollary 4.36. A = A∗ =⇒ σ(A) ⊆ R.

Proof. If F = C, then a self-adjoint operator A will have real quadratic forms, and Num(A) ⊆ R.
If F = R, we would have the same property about its numerical range. So, σ(A) ⊆ Num(A) ⊆
R.

Notice that the map u(z) = (z − i)/(z + i) maps the upper half plane to the unit disc. For
A = A∗, if we define U := (A − i)(A + i)−1, we would have U being unitary. This is called the
Cayley transform. Similarly, if U is unitary and 1 /∈ σ(U), then A = i(I + U)(I − U)−1 is
self-adjoint.

Definition 4.37. The numerical radius of A, denoted by q(A), is q(A) := sup∥x∥=1 |(Ax, x)|.

The numerical radius has certain properties. Notice that |(Ax, x)| ≤ q(A)∥x∥2 for all x. We
would then have ∥A∥ ≥ q(A) ≥ r(A) for all operators A. This chain of inequalities can be
straightened to equalities if we have some more conditions of A.

Theorem 4.38. If A is self-adjoint, ∥A∥ = q(A).

Proof. We already have ∥A∥ ≥ q(A), to obtain the desired result we just need to establish
∥A∥ ≤ q(A), i.e. for all x ∈ H and ∥x∥ = 1, we would have ∥Ax∥ ≤ q(A).

We have

(A(x+ y), x+ y)− (A(x− y), x− y) = 2(Ax, y) + 2(Ay, x) = 2(Ax, y) + 2(Ax, y) = 4Re(Ax, y).

This means, we have

4Re(Ax, y) ≤ |4Re(Ax, y)| ≤ q(A)(∥x+ y∥2 + ∥x− y∥2) = 2q(A)(∥x∥2 + ∥y∥2).

If ∥x∥ = ∥y∥ = 1, we would therefore get 4Re(Ax, y) ≤ 4q(A). If we take y = Ax/∥Ax∥ when
∥Ax∥ ≠ 0, then Re(Ax, y) = ∥Ax∥2/∥Ax∥ = ∥Ax∥ ≤ q(A). If ∥Ax∥ = 0, the desired inequality
would be trivially true. So, we have the desired inequality, thus the desired result.

Theorem 4.39. Let A = A∗ ∈ B(H). Denote m := inf∥x∥=1(Ax, x) and M := sup∥x∥=1(Ax, x).
Then, we have (i) σ(A) ⊆ [m,M ], (ii) m,M ∈ σ(A). Moreover, if there exists x such that
∥x∥ = 1 and (Ax, x) = m, i.e. the infimum is attained, then Ax = mx. Similarly, if the
supremum is attained by some x, then we have Ax = Mx.

Proof. The numerical range of A will be an interval [m,M ], and we would shift it so that it is
symmetrical about the origin by adding some constant to the operator A. We let α := (M+m)/2
and β := (M −m)/2, and B := A − αI. This means the numerical range of B is [−β, β], and
∥B∥ = q(B) = β using Theorem 4.37 above.
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Suppose (Bx, x) = β for some x with ∥x∥ = 1, we have

∥(B − βI)x∥2 = ((B − βI)x, (B − βI)x)

= (Bx,Bx)− β(x,Bx)− β(Bx, x) + β2(x, x)

= ∥Bx∥2 − 2β2 + β2

≤ β2 − β2 = 0.

So, as a square is non-negative, ∥(B − βI)x∥ = 0, which implies (B − βI)x = 0.

Since β = sup∥x∥=1(Bx, x), there exists a sequence {xn} such that ∥xn} = 1 and (Bxn, xn) → β.
Then,

∥(B − βI)xn∥2 = ((B − βI)xn, (B − βI)xn)

= (Bxn, Bxn)− β(xn, Bxn)− β(Bxn, xn) + β2(xn, xn)

= ∥Bxn∥2 − 2β(Bxn, xn) + β2

≤ 2β2 − 2β(Bxn, xn) → 0

as n → ∞. So, (B − βI)xn → 0 as n → ∞.

Suppose now that (B − βI)−1 exists so it is bounded, then ∥xn∥ = ∥(B − βI)−1(B − βI)xn∥ ≤
∥(B−βI)−1∥·∥(B−βI)xn∥ → 0. However, ∥xn∥ = 1 by construction, so we have a contradiction.
Thus, β ∈ σ(B).

Therefore, if we reverse the shifting, we get M ∈ σ(A). The case is similar for −β and thus
m.

Corollary 4.40. If A = A∗ ∈ B(H) and σ(A) = {0}, then A = 0.

Proof. Since A is self-adjoint so normal, we have ∥A∥ = r(A) (see theorem below). Furthermore,
we have

r(A) = sup{|λ|} = max{|λ|} = 0 = ∥A∥

so A = 0.

Corollary 4.41. If A = A∗ ∈ B(H), then σ(A) ⊆ {λ ∈ R, λ ≥ 0} ⇐⇒ (Ax, x) ≥ 0 for all x.
We call such an operator A as positive.

Remark. This result still holds even when A is unbounded.

Theorem 4.42. Let A ∈ B(H) be normal, i.e. AA∗ = A∗A, then r(A) = ∥A∥. This means
r(A) = q(A) = ∥A∥.

Proof. A is normal so ∥Ax∥ = ∥A∗x∥ for all x. So, ∥AAx∥ = ∥A2x∥ = ∥A∗Ax∥ for al x, and
∥A2∥ = sup∥x∥=1 ∥A2x∥ = sup∥x∥=1 ∥A∗Ax∥ = ∥A∗A∥ = ∥A∥2. Then, we have ∥A2k∥ = ∥A∥2k
for any positive integer k. Thus,

r(A) = lim
n→∞

∥An∥1/n = lim
k→∞

∥A2k∥1/2k = lim
k→∞

∥A∥ = ∥A∥,

as desired.
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4.7 Hilbert-Schmidt

Suppose now A = A∗ ∈ Com(H). Then all non-zero points in σ(A) are real eigenvalues. Let
us list them including multiplicities: λ1, λ2, . . . such that λj ∈ R and |λ1| ≥ |λ2| ≥ · · · . If
there are infinite many eigenvalues, then limn→∞ λn = 0. Let {en} be an orthonormal system of
corresponding eigenvectors with Aen = λnen.

We denote L := span{en}Nn=1, N ∈ N ∪ {∞}. Then, for all x ∈ H, we can write

x =

N∑
n=1

cnen + y

with y ∈ L⊥. Then, Ax =
∑N

n=1 cnλnen , i.e. y ∈ KerA. This last line is known as the
Hilbert-Schmidt Theorem.

Theorem 4.43 (Hilbert-Schmidt Theorem). L⊥ = KerA.

Proof. We know that L⊥ ⊇ KerA, and this is a standard result. We want to have L⊥ ⊆ KerA to
get the desired result. Suppose y ∈ L⊥, then (Ay, en) = (y,Aen) = λn(y, en) = 0. So Ay ∈ L⊥.

Thus, AL⊥ ⊆ L⊥. Consider A|L⊥ . This is compact. If k ∈ σ(A|L⊥) with k ̸= 0, then k is an
eigenvalue of A|L⊥ , yet all eigenvalues of it are 0. So, σ(A|L⊥) = {0}. Also, A|L⊥ is self-adjoint,
so its spectrum is zero implying the operator is zero, so L⊥ ⊆ KerA. Done.

Consider x =
∑N

n=1 cnen + y and Ax =
∑N

n=1 cnλnen. Given a function f : R → C, we can
define f(A) by

f(A)x =

N∑
n=1

cnf(λn)en + f(0)y.

In particular, if A is positive, so λn > 0 for all n, then we can define
√
A as an compact operator

such that
√
Ax =

N∑
n=1

cn
√
λnen

whenever x =
∑N

n=1 cnen + y.

Let {en} and {fk} be two complete orthonormal systems and T ∈ B(H). Then,

∞∑
n=1

∥Ten∥2 =

∞∑
n=1

∞∑
k=1

|(Ten, fk)|2 =

∞∑
k=1

∞∑
n=1

|(en, T ∗fk)|2 =

∞∑
k=1

∥T ∗fk∥2.

Thus,
∑∞

n=1 ∥Ten∥2 =
∑∞

n=1 ∥Te′n∥2 for any orthonormal system {e′n}.

Definition 4.44. A Hilbert-Schmidt norm of T is ∥T∥HS =
√∑∞

n=1 ∥Ten∥2. If ∥T∥HS < ∞,
then T is called a Hilbert-Schmidt operator.

We have ∥T∥2 = sup∥x∥=1 ∥Tx∥2 = sup∥e1∥=1 ∥Te1∥2 ≤ supe1,e2,...
∑

∥Ten∥2 = ∥T∥HS .

Theorem 4.45. Hilbert-Schmidt Operators are compact.
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Proof. For x =
∑N

n=1 anen, we define TNx by TNx = x =
∑N

n=1 anTen and TN is finite rank so
compact. Next,

∥(T − TN )x∥ =

∥∥∥∥∥
∞∑

n=N+1

anTen

∥∥∥∥∥
≤

∞∑
n=N+1

|an| · ∥Ten∥

≤

√√√√ ∞∑
n=1

|an|2
√√√√ ∞∑

n=N+1

∥Ten∥2

= ∥x∥

√√√√ ∞∑
n=N+1

∥Ten∥2

for all x. So,

∥T − Tn∥ ≤

√√√√ ∞∑
n=N+1

∥Ten∥2 → 0

as n → ∞. Thus, T is compact.

Let us do an example. Consider H = L2[0, 1] and k : [0, 1]2 → F satisfying∫ 1

0

∫ 1

0

|k(t, τ)|2 dτdt < ∞,

i.e. k ∈ L2[0, 1]
2. Consider

(kf)(t) =

∫ 1

0

k(t, τ)f(τ) dτ.

Proposition 4.46. k : H → H is Hilbert-Schmidt and ∥k∥HS =
√∫ 1

0

∫ 1

0
|k(t, τ)|2 dτdt.

Proof. Denote kt(τ) = k(t, τ). Let {en} be a complete orthonormal system and we have

(ken)(t) =

∫ 1

0

k(t, τ)en(t)dτ = (kt, en).

Therefore,

∥ken∥2 =

∫ 1

0

|(ken)(t)|2 dt =

∫ 1

0

|(kt, en)|2 dt

and

∥k∥2HS =

∞∑
n=1

∥ken∥2 =

∫ 1

0

∞∑
n=1

|(kt, en)|2 dt

=

∫ 1

0

∥kt∥2 dt =

∫ 1

0

∫ 1

0

|kt(τ)|2 dτdt

=

∫ 1

0

∫ 1

0

|k(t, τ)|2 dτdt.
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4.8 Schatten-von Neumann Class

Let T ∈ Com(H). Consider T ∗T . We denote its eigenvalues by

s21(T ) ≥ s22(T ) ≥ · · ·

with sj ≥ 0. The sequence {sj(T )} is called the s-numbers, or approximate numbers, of T .

Definition 4.47. We define the Schatten-von Neumann class Sp = {T |
∑∞

j=1 sj(T )
p < ∞}.

We denote ∥T∥p = (
∑∞

j=1 sj(T )
p)1/p. Here, p ≥ 1. Also, ∥T∥2 = ∥T∥HS.

Operators T ∈ S1 are called the trace-class operators. For them,

∞∑
j=1

(Tej , ej) = trT =
∑

λj(T )

makes sense.
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Chapter 5

Additional Topics

5.1 Sturm-Liouville Operators*

Consider H = L2[0, 1], and operator A defined by Af = −f ′′+qf where q ∈ C[0, 1] is real-valued
and is commonly known as the potential.The domain of this operator, with Dirichlet boundary
condition, is DA = {f ∈ H2[0, 1], f(0) = f(1) = 0}, which means the operator is self-adjoint.
The quadratic form of A is

QA(f) =

∫
[|f ′|2 + qf2] ≥

∫
f2

if q ≥ 1. This means Num(A) ⊆ [1,∞), so σ(A) ⊆ [1,∞) as A is self-adjoint. So, 0 /∈ σ(A).

We would now like to find the resolvent of A. We will solve the equation Au = 0, which is a
second-order ODE with two unique solutions after we have some initial conditions. We denote
the two solutions of the ODE as u1 and u2, and we have

u1(0) = 0, u′
1(0) = 1, Au1 = 0.

u2(1) = 0, u′
2(1) = 1, Au2 = 0.

So, for j = 1, 2, we have u′′
j = quj .

The Wronskian of this equation is thus

W (t) = det

[
u1(t) u2(t)
u′
1(t) u′

2(t)

]
= u1(t)u

′
2(t)− u2(t)u

′
1(t).

Firstly, W ′(t) = 0. To see this, we have

W ′ = u′
1u

′
2 + u1u

′′
2 − u′

2u
′
1 − u2u

′′
1 = u1u

′′
2 − u2u

′′
1 = qu1u2 − qu1u2 = 0.

So, W (t) is a constant, and this is a non-zero constant. To see this, suppose W (t) = 0, consider
t = 0 and W (0) = 0. We have

W (0) = u1(0)u
′
2(0)− u2(0)u

′
1(0) = −u2(0) = 0.

However, u2 is not a zero function since u′
2(1) = 1. So, u2 ∈ DA and u2 ̸= 0 with Au2 = 0.

This means, u2 is an eigenfunction of A with eigenvalue 0, implying 0 ∈ σ(A) and this is a
contradiction.
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Definition 5.1. The Green’s function is defined as

k(t, τ) :=

{
−c−1u1(t)u2(τ) t ≤ τ

−c−1u2(t)u1(τ) t > τ.

Notice that k(t, τ) = 0 whenever either t or τ is 0 or 1.

We will define the operator K as

(Kf)(t) =

∫ 1

0

k(t, τ)f(τ)dτ.

We claim that K = A−1. The verification of this claim is slightly technical, thus omitted here.

We notice that the spectrum of K is

σ(K) = {k1 ≥ k2 ≥ k3 ≥ · · · .kj → 0}

and the spectrum of A is

σ(K) = {λ1 ≥ λ2 ≥ λ3 ≥ · · · .λj → ∞}.

Definition 5.2. Let A = A∗ and λ ∈ σ(A). We say that λ belongs to the discrete spectrum
of A, denoted by σd(A), if λ is an eigenvalue of finite multiplicity isolated from the rest of the
spectrum of A.

We will define the essential spectrum σess as the complement of the discrete spectrum in the
whole spectrum, i.e. σess(A) = σ(A)\σd(A).

Note that the essential spectrum is special since it is preserved under compact perturbation, i.e.
σess(A) = σess(A+K) where K is a compact operator.

5.2 Variational Definition of Eigenvalues*

Suppose A = A∗ and A > 0 with σess(A) = ∅. The spectrum is A is all discrete, i.e. σ(A) =
σd(A) = {λ1 ≤ λ2 ≤ · · · } with λj → ∞.

Given that the quadratic form QA(f) = (Af, f), we can have a variational definition of eigen-
values

λ1 := inf
f ̸=0

QA(f)

∥f∥2

and we also have

λn := inf
dimL=n
L⊂DA

sup
f∈L
f ̸=0

QA(f)

∥f∥2
.
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