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Chapter 1

Metropolis-Hastings Algorithms

Markov chain Monte Carlo (MCMC) algorithms have proved to be extremely effective in various
computation-intensive settings, such as Bayesian statistics (Diaconis, 2009), statistical mechanics
(Faulkner and Livingstone, 2022), and machine learning (Andrieu et al., 2003).

Usually, MCMC algorithms can be implemented to do two things: estimating and sampling.
When we would like to compute an integral that is (almost) impossible to do by hand, say it is of
high dimension and has a complicated form, we have to turn to an approximate solution and use
Monte Carlo methods instead. Other times we might have a probability distribution in mind,
and we would like to generate independent and identically distributed (i.i.d.) samples from this
distribution, and MCMC algorithms are good at it, especially when the target distribution is
too complex to be sampled from using standard methods (e.g. inverse CDF). The second goal
is harder to achieve than the first goal, and we can compute good approximations once we have
obtained good samples using ergodic averages. For example, if we would like to estimate an
integral of the form ∫

f(x)π(x)dx =: Eπ[f(X)],

where π is a probability distribution and f is an arbitrary function, we could generate i.i.d.
samples X1, X2, . . . , Xn following π and estimate the integral by

Eπ[f(X)] ≈ 1

n

n∑
i=1

f(Xi).

This approximation is justified by the strong law of large numbers (SLLN) (Williams, 1991)
which says

1

n

n∑
i=1

f(Xi)→ Eπ[f(X)] a.s.

as n → ∞. This estimation scheme is known as the Monte Carlo method. Note that this
scheme works for any integral, as we can have∫

f(x)dx =

∫
f(x)

π(x)
π(x)dx = Eπ

[
f

π
(X)

]
for some function f and probability distribution function π.
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The rough underlying idea of MCMC is as follows. An ergodic1 Markov chain, after running
for many steps, will converge to an equilibrium distribution regardless of its initial position.
This means, once we have reached the equilibrium, every new step made by the chain can be
viewed as samples from that equilibrium distribution, and thus we can easily obtain samples and
compute estimations using the Monte Carlo method afterward. This also explains the name of
the algorithm, i.e. we use a Markov chain to generate samples and then use the Monte Carlo
method to approximate.

One of the first MCMC algorithms is the Metropolis-Hastings Algorithm (MH) (Hastings,
1970). Given a target distribution π ∈ Rn for some dimension n (we will take Rn as our default
space for the rest of the thesis), a proposal kernel Q(·, ·) with Q(x,A) =

∫
A
q(x, y)dy where

q(x, y) is the probability of moving from x to y, and a starting position x, we have

Algorithm 1 Metropolis-Hastings Algorithm

Require: Target distribution π, proposal kernel q(·, ·), starting position x
1: X0 = x
2: for i = 0, 1, 2, · · · do
3: Xcurr = Xi

4: Xprop ∼ q(Xcurr, ·)
5: Draw U ∼ Unif [0, 1]
6: if α(Xcurr, Xprop) < U then
7: Accept Xprop and Xi+1 = Xprop.
8: else
9: Reject Xprop and Xi+1 = Xcurr.

10: end if
11: end for

Here, α(x, y) = min
{
1, π(y)q(y,x)

π(x)q(x,y)

}
is the acceptance probability. The above algorithm will

output a sequence {Xn}, and under some conditions on Q the distribution of Xn will converge
to π.

The part of the above algorithm that decides whether or not we should keep the proposed move
is commonly referred to as the Metropolis adjustment. Note that this adjustment is essential
for an MH algorithm, but it is not always needed for a general MCMC algorithm. An algorithm
that is Metropolis-Hastings but with the adjustment removed is commonly called an unadjusted
algorithm, and an example of such an algorithm is the unadjusted Langevin algorithm (to be
discussed in Chapter 3 and 6).

The overall transition kernel P (x, dy) of the above distribution is

P (x, dy) = Q(x, dy)α(x, y) + δx(dy)

∫
(1− α(x, u))Q(x, du)

where the Dirac measure δa(A) = 1 when a ∈ A and 0 otherwise for any (measurable) set A.
The above kernel consists of two parts. The first part is when we accept the proposal that moves
us from x to y, and the second part is when our proposal is rejected but we have x = y to begin
with.

We would want the transition kernel to have π as its invariant measure / distribution. It turns
out that if the kernel satisfies the detailed balance equation(s), the kernel will be π-reversible,

1ϕ-irreducible and aperiodic
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or simply reversible, and the π-invariance is guaranteed. Recall that for a Markov chain with
transition kernel P to be π-invariant, it means that we have∫

x

π(dx)P (x, dy) = π(dy).

Definition 1.1. A Markov chain with transition kernel P is π-reversible for some distribution
π when it satisfies the detailed balance equation(s)

π(dx)P (x, dy) = π(dy)P (y, dx)

for all possible x, y.

Proposition 1.2. If a Markov chain with transition kernel P is π-reversible, then it is π-
invariant.

Proof. Using the detailed balance equation, we have∫
x

π(dx)P (x, dy) =

∫
x

π(dy)P (y, dx) = π(dy)

∫
x

P (y, dx) = π(dy),

as desired.

So, if a Markov chain with transition kernel P satisfies the detailed balance equation, it would
be π-reversible and therefore π-invariant, and this means, given that the chain is ergodic2, the
chain has π as its equilibrium measure / distribution, which is extremely desirable.

Theorem 1.3. The Metropolis-Hastings algorithm, as constructed in Algorithm 1, produces a
Markov chain {Xn}n∈N that is π-reversible if target π and proposal kernel Q admit densities.

Proof. We just need to show that the transition kernel P (x, dy) of the algorithm satisfies the
detailed balance equation

π(dx)P (x, dy) = π(dy)P (y, dx).

The equation is trivial when x = y, so we will only consider x ̸= y. We have

π(dx)P (x, dy) = π(dx)

[
Q(x, dy)α(x, y) + δx(dy)

∫
(1− α(x, u))Q(x, du)

]
= [π(x)dx][q(x, y)dy]α(x, y)

= [π(x)dx][q(x, y)dy] min

{
1,

π(y)q(y, x)

π(x)q(x, y)

}
= min {π(x)q(x, y), π(y)q(y, x)} dxdy

= π(y)q(y, x)min

{
π(x)q(x, y)

π(y)q(y, x)
, 1

}
dxdy

= π(dy)Q(y, dx)α(y, x) = π(dy)P (y, dx),

as desired.

2Almost always the case for Markov chains generated by MCMC algorithms, and is easy to check.
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Even though the Metropolis-Hastings algorithm will generate a Markov chain that respects π
as its invariant measure, we do not know when it will actually converge to π. This question of
convergence (and the rate of convergence) is a big and active area of research in MCMC theory,
and we direct the readers to Roberts and Rosenthal (2004) for a survey on various existing
results. We have considered exactly this question in various forms in the later chapters, such as
Chapter 3 and 6.

1.1 Metropolis Adjusted Langevin Algorithm

The Metropolis Adjusted Langevin Algorithm (MALA) is a specific kind of MH algorithm. It is
an algorithm with a particular choice of proposal kernel that is based on the Langevin diffusion
process. The Langevin diffusion {Lt} can be characterised by the following stochastic differential
equation (SDE):

dLt =
1

2
∇ log π(Lt)dt+ dBt,

where the probability density π is differentiable and π > 0.

It can be verified that, using the Fokker-Planck equation, π is indeed an invariant distribution of
the above SDE (Xifara et al., 2014). The proposal of MALA involves a discretisation of this SDE,
and it would naturally incur a discretisation error which is then corrected via the Metropolis
adjustment step.

The algorithm of k-dimensional MALA is as follows.

Algorithm 2 k-Dimensional Metropolis Adjusted Langevin Algorithm

Require: Target distribution π, starting position x
1: X0 = x
2: for i = 0, 1, 2, · · · do
3: Xcurr = Xi

4: Xprop ∼ Nk(Xcurr +
h
2∇ log π(Xcurr), hIk).

5: Draw U ∼ Unif [0, 1]
6: if α(Xcurr, Xprop) < U then
7: Accept Xprop and Xi+1 = Xprop.
8: else
9: Reject Xprop and Xi+1 = Xcurr.

10: end if
11: end for

Here, Nk(µ,Σ) refers to a k-dimensional normal distribution with mean vector µ and variance
matrix Σ. Note that the choice of ∇ log π instead of ∇π is not an arbitrary one. Many real-
life applications of MCMC algorithms are for Bayesian inferences, where we would only know
distributions proportionally, so we would only have Cπ instead of π for some unknown constant
C. This would not affect ∇ log π as we have

∇ logCπ =
Cπ′

Cπ
=

π′

π
= ∇ log π,

which is not the case for ∇π.
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Chapter 2

Geometric Ergodicity

This chapter is heavily adapted from the survey Roberts and Rosenthal (2004).

2.1 Total Variation Distance Basics

For a (time-homogeneous) Markov chain {Xn} with state space X , we let it have stationary
distribution π(·) and define its transition kernel as

P (x,A) = P[Xn+1 ∈ A | Xn = x]

for any measurable set A ⊆ X , and the n-step transition kernel as

Pn(x,A) = P[Xn ∈ A | X0 = x]

for any measurable set A ⊆ X . If a transition distribution P (x, ·) admits a density P , we will
denote P as the transition density.

If we want to measure the convergence of a Markov chain, we would need a notion of distance be-
tween distributions. There are many possibilities and one of them is the total variation distance,
defined as follows.

Definition 2.1. The total variation distance between two probability measures ν1(·) and ν2(·)
defined on the same measurable space (Σ,F) is

∥ν1(·)− ν2(·)∥ = sup
A∈F
|ν1(A)− ν2(A)|.

This notion allows us to formally describe the convergence of a Markov chain to its stationary
distribution, i.e. the Markov chain converges to its stationary distribution π(·) if

lim
n→∞

∥Pn(x, ·)− π(·)∥ = 0

for any π-a.e. x in the state space.

This convergence is only qualitative, and we do not know the exact rate of this convergence.
Later on, we will introduce the concepts of uniform ergodicity and geometric ergodicity, which
are more refined types of convergence of a Markov chain.

There are several results about the total variation distance that we will use later.
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Proposition 2.2. We have

(a) ∥µ1(·)− µ2(·)∥ = supf :X→[0,1] |
∫
fdµ1 −

∫
fdµ2|.

(b) ∥µ1(·)− µ2(·)∥ = (b− a)−1 supf :X→[a,b] |
∫
fdµ1 −

∫
fdµ2| for any b > a.

(c) If π(·) is stationary for a Markov chain kernel P , then ∥Pn(x, ·)− π(·)∥ is non-increasing
in n.

(d) Letting (µiP )(A) :=
∫
P (x,A)µi(dx), we always have ∥(µ1P )(·) − (µ2P )(·)∥ ≤ ∥µ1(·) −

µ2(·)∥.
(e) Let t(n) := 2 supx∈X ∥Pn(x, ·)− π(·)∥, then, t(a+ b) ≤ t(a)t(b) for all a, b ∈ N.

Proof. (a) Consider ρ = µ1 + µ2, and let g := dµ1/dρ and h := dµ2/dρ be the Radon-Nikodym
derivatives (Williams, 1991). WLOG, we assume ρ({g > h}) > ρ({g ≤ h}). We have∣∣∣∣∫ fdµ1 −

∫
fdµ2

∣∣∣∣ = ∣∣∣∣∫ f(g − h)dρ

∣∣∣∣ .
Since f : X → [0, 1], this integral will be maximised when f takes 1 on A := {g > h} and takes
0 on {g ≤ h}. In that case, we have

sup
f :X→[0,1]

∣∣∣∣∫ fdµ1 −
∫

fdµ2

∣∣∣∣ = ∣∣∣∣∫
A

(g − h)dρ

∣∣∣∣ = |µ1(A)− µ2(A)| = ∥µ1(·)− µ2(·)∥.

(b) Similar to before. Just consider f that takes b on A := {g > h} and takes a on {g ≤ h}.
Then, we have the desired equality.

(c) We have for any measurable A ⊆ X

∥Pn+1(x, ·)− π(·)∥ ≤ |Pn+1(x,A)− π(A)|

=

∣∣∣∣∫
y

Pn(x, dy)P (y,A)−
∫
y

π(dy)P (y,A)

∣∣∣∣
≤ ∥Pn(x, ·)− π(·)∥

where the first inequality follows from the definition of total variation distance, and the last
inequality follows from (a) as P (·, A) : X → [0, 1].

(d) Similar to (c). We have for any measurable A ⊆ X

∥(µ1P )(·)− (µ2P )(·)∥ ≤ |(µ1P )(A)− (µ2P )(A)|

=

∣∣∣∣∫ P (x,A)µ1(dx)−
∫

P (x,A)µ2(dx)

∣∣∣∣
≤ ∥µ1(·)− µ2(·)∥

where the first inequality follows from the definition of total variation distance, and the last
inequality follows from (a) as P (·, A) : X → [0, 1].

(e) For any a, b, we define P̂ (x, ·) := P a(x, ·)− π(·) and Q̂(x, ·) := P b(x, ·)− π(·). Consider some
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f : X → [0, 1], we have

(P̂ Q̂f)(x) =

∫
y

f(y)

∫
z

[P a(x, dz)− π(dz)][P b(z, dy)− π(dy)]

=

∫
y

f(y)

∫
z

[P a(x, dz)P b(z, dy)− π(dz)P b(z, dy)− P a(x, dz)π(dy) + π(dz)π(dy)]

=

∫
y

f(y)[P a+b(x, dy)− π(dy)− π(dy) + π(dy)]

=

∫
y

f(y)[P a+b(x, dy)− π(dy)],

which means t(a+ b) ≤ 2 supx∈X (P̂ Q̂f)(x) by (a).

Next, let g(x) := (Q̂f)(x) =
∫
y
Q̂(x, dy)f(y) =

∫
y
f(y)[Pm(x, dy)−π(dy)], and g∗ := supx |g(x)|.

Then, we have

g∗ = sup
x
|g(x)| = sup

x

∣∣∣∣∫
y

f(y)[Pm(x, dy)− π(dy)]

∣∣∣∣
≤ sup

x
∥Pm(x, ·)− π(·)∥ = 1

2
t(m)

where the last inequality follows from (a). So 2g∗ ≤ t(m).

If g∗ = 0, then g(x) = 0 for all x and we have (P̂ Q̂f)(x) = 0. If g∗ ̸= 0, we let (g/g∗)(x) :=
g(x)/g∗, so g/g∗ : X → [−1, 1]. We have (Q̂f)(x) = g∗ · (g/g∗)(x). This means

t(a+ b) ≤ 2 sup
x
|(P̂ Q̂f)(x)|

= 2g∗ sup
x
|(P̂ [g/g∗])(x)|

≤ t(b) sup
x
|(P̂ [g/g∗])(x)|

≤ t(b)2 sup
x
∥P a(x, ·)− π(·)∥

≤ t(b)t(a)

where the second last inequality follows from (b) as g/g∗ : X → [−1, 1]. When g∗ = 0, t(a+ b) ≤
t(a)t(b) holds trivially as both sides will become zero. Thus, we have obtained our desired
inequality.

2.2 Ergodicity

In this section, we will investigate the notion of ergodicity as a guarantee of Markov chain
convergence.

Definition 2.3. A Markov chain is ϕ-irreducible if there exists a non-zero σ-finite measure ϕ
on X such that for all measurable A ⊆ X with ϕ(A) > 0 and all x ∈ X , there exists a positive
integer n such that Pn(x,A) > 0.

Definition 2.4. A Markov chain with stationary distribution π(·) is aperiodic if there does not
exists d ≥ 2 and disjoint subsets X1,X2, . . . ,Xd ⊆ X with P (x,Xi+1) = 1 for all x ∈ Xi for
i = 1, 2, . . . , d− 1 and P (x,X1) = 1 for all x ∈ Xd, such that π(X1) > 0.
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Theorem 2.5 (Roberts and Rosenthal (2004)). If a Markov chain on a state space with countably
generated σ-algebra is ϕ-irreducible and aperiodic with a stationary distribution π(·), then for π-
a.e. x ∈ X , we have

lim
n→∞

∥Pn(x, ·)− π(·)∥ = 0.

In particular, we have limn→∞ ∥Pn(x,A)− π(A)∥ = 0 for all measurable A ⊆ X .

Remark. For most of the Markov chains for MCMC algorithms, ϕ-irreducibility and aperiodicity
are almost always satisfied, since we usually can reach anywhere in the state space from any
starting point via the Rn-supported proposal kernel.

2.2.1 Uniform Ergodicity

Ergodicity establishes convergence, yet it does not indicate the rate of convergence. The no-
tion of uniform ergodicity, and the notion of geometric convergence introduced in the following
subsection, shed light on this rate.

Definition 2.6. A Markov chain having stationary distribution π(·) is uniformly ergodic if

∥Pn(x, ·)− π(·)∥ ≤Mρn

for n = 1, 2, 3, . . . and for ρ < 1 and M <∞.

Definition 2.7. A subset C ⊆ X is small if there exists a positive integer n0, ε > 0, and a
probability measure ν(·) on X such that the following minorisation condition holds:

Pn0(x, ·) ≥ εν(·)

for all x ∈ C. In particular, we have Pn0(x,A) ≥ εν(A) for all measurable A ⊆ X for all x ∈ C.

It turns out that small sets are not hard to find for Markov chains generated by MH algorithms.
In fact, all nonempty compact sets are small. Since we are working in Rn, every compact set is
simply closed and bounded, according to the Heine-Borel theorem.

Theorem 2.8 (Theorem 2.2 of Roberts and Tweedie (1996b)). Suppose that π is bounded away
from 0 and ∞ on compact sets, and there exist positive δq and εq such that for every x,

|x− y| ≤ δq =⇒ q(x, y) ≥ εq.

Then, the Markov chain produced by that MH algorithm with proposal kernel q(x, y)dy is irre-
ducible, aperiodic, and every nonempty compact set is small.

Theorem 2.9 (Roberts and Rosenthal (2004)). A Markov chain with invariant distribution π(·)
that satisfies the minorisation condition for some n0 ∈ N, ε > 0, probability measure ν(·) with
small set C = X is uniformly ergodic. Additionally, we have

∥Pn(x, ·)− π(·)∥ ≤ (1− ε)⌊n/n0⌋

for all x ∈ X .

2.2.2 Geometric Ergodicity

Definition 2.10. A Markov chain having stationary distribution π(·) is geometrically ergodic
if

∥Pn(x, ·)− π(·)∥ ≤M(x)ρn

for n = 1, 2, 3, . . . and for ρ < 1 and M(x) <∞ for π-a.e. x ∈ X .
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Definition 2.11. A Markov chain is said to satisfy a drift condition if there are constants
λ ∈ (0, 1), b <∞, and a Lyapunov function V : X → [1,∞] such that

PV ≤ λV + b1C

i.e.
∫
X P (x, dy)V (y) ≤ λV (x) + b1C(x) for all x ∈ X .

Remark. The drift condition ensures that when the Markov chain leaves the small set C, it will
return at a geometrical rate λ.

Theorem 2.12 (Roberts and Rosenthal (2004)). A ϕ-irreducible, aperiodic Markov chain with
stationary distribution π(·) is geometrically ergodic if it satisfies a minorisation condition for
some C ⊆ X , ε > 0, probability measure ν(·) as well as the drift condition for λ ∈ (0, 1), b <∞,
and a function V : X → [1,∞] with V (x) <∞ for π-a.e. x ∈ X .

In fact, we could further simplify the conditions needed to be checked for geometric ergodicity.
Since we have from Theorem 2.8 that all compact sets are small, we just need to check for the
following version of the drift condition.

Proposition 2.13 (Proposition 3.1 of Roberts and Tweedie (1996b)). If π satisfies Theorem 2.8,
then the Markov chain produced by the MH algorithm with transition kernel P is geometrically
ergodic if and only if there exists a real-valued function V > 1 such that

lim sup
∥x∥→∞

PV (x)

V (x)
= lim sup

∥x∥→∞

∫
V (y)

V (x)
P (x, dy) < 1.

Remark. The norm for ∥x∥ → ∞ is the standard Euclidean norm, instead of the total variation
distance. We do not specify this difference here, as it is usually clear from the context which
norm we are using.

Proof. The minorisation condition needed for geometric ergodicity is satisfied by Theorem 2.8,
so we just need to verify that the above inequality is an alternative form of the drift condition.

It is obvious that the drift condition implies the inequality. We have,

PV (x) ≤ λV (x) + b1C(x)

PV (x)

V (x)
≤ λ+ b

1C(x)

V (x)

lim sup
∥x∥→∞

PV (x)

V (x)
≤ lim sup

∥x∥→∞

[
λ+ b

1C(x)

V (x)

]
= λ < 1

For the reverse direction, we have

lim sup
∥x∥→∞

PV (x)

V (x)
= λ < 1.

For any ε > 0, there exists a constant Mε > 0 such that for all ∥x∥ > Mε, we have

PV (x)

V (x)
= λ+ ε⇐⇒ PV (x) = (λ+ ε)V (x).

Next, for ∥x∥ ≤Mε, since this is a bounded set and

PV (x)− (λ+ ε)V (x)

13



is continuous in x, we have
PV (x)− (λ+ ε)V (x) < b

for some constant b. Therefore, we have the inequality

PV (x)− (λ+ ε)V (x) < b1{∥x∥≤Mε}(x)⇐⇒ PV (x) < (λ+ ε)V (x) + b1{∥x∥≤Mε}(x).

Since ε is arbitrary, we can take the limit of it going to zero, and get the desired inequality.

2.3 Proofs of Theorems

In this section, we will present the proofs of the mentioned theorems in previous sections. The
proofs employ a powerful technique called the coupling argument. Consider two random vari-
ables X and Y that are defined on the same space X , with laws L(X) and L(Y ) respectively.

Lemma 2.14 (Coupling Inequality). ∥L(X)− L(Y )∥ ≤ P(X ̸= Y )

Proof. We have

∥L(X)− L(Y )∥
= sup

A
|P(X ∈ A)− P(Y ∈ A)|

= sup
A
|P(X ∈ A,X = Y ) + P(X ∈ A,X ̸= Y )− P(Y ∈ A, Y = X)− P(Y ∈ A, Y ̸= X)|

= sup
A
|P(X ∈ A,X ̸= Y )− P(Y ∈ A, Y ̸= X)|

= sup
A

P(X ̸= Y )|P(X ∈ A | X ̸= Y )− P(Y ∈ A | X ̸= Y )| ≤ P(X ̸= Y ).

The dependency of X and Y , or how they are coupled, is not fixed, and that gives us room to
utilise the above inequality.

Example. Consider X,Y ∼ N(0, 1), or any other distribution really. Clearly, we have ∥L(X)−
L(Y )∥ = 0 as L(X) = L(Y ).

� If X = Y , we have 0 = ∥L(X)− L(Y )∥ ≤ P(X ̸= Y ) = 0.
� If X,Y are independent so X ̸= Y a.s., we have 0 = ∥L(X)− L(Y )∥ ≤ P(X ̸= Y ) = 1.

The first inequality is much better than the second one, and the quality of the inequality, as
illustrated in this example, is dictated by how we design the dependency of X and Y .

2.3.1 Coupling Construction

The ergodicity results are all about the quantity ∥Pn(x, ·) − π(·)∥. If we can construct two
random variable sequences {Xn} and {X ′

n} such that their respective laws are Pn(x, ·) and
π(·), we could obtain a bound on this total variation distance using the coupling inequality by
simply computing the probability that the two random variables (for a fixed n) are different, i.e.
P(Xn ̸= X ′

n).

As illustrated in the previous example, the quality of the bound by coupling inequality relies on
how we design the dependency of the two random variables. Here, we present a neat coupling
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construction of Xn and X ′
n so they have the desired laws, and at the same time have a low

probability of being different.

Recall that the minorisation condition gives us ε, n0, C, ν(·). We will use these things in the
following construction.

ALGORITHM OF CONSTRUCTING A COUPLING

Start: X0 = x, X ′
0 ∼ π(·).

Loop: Given the current states Xn and X ′
n

1. If Xn = X ′
n, then draw Xn+1 = X ′

n+1 ∼ P (Xn, ·). Increase n by 1.
2. If (Xn, X

′
n) ∈ C × C, then

(a) draw Xn+n0
= X ′

n+n0
∼ ν(·) with probability ε.

(b) draw conditionally independently Xn+n0
∼ 1/(1−ε)[Pn0(Xn, ·)−εν(·)] and X ′

n+n0
∼

1/(1− ε)[Pn0(X ′
n, ·)− εν(·)] with probability 1− ε.

The intermediate steps Xn+1, . . . , Xn+n0−1 and X ′
n+1, . . . , X

′
n+n0−1 are filled from the

correct conditional distributions. Increase n by n0.
3. Else, conditionally independently draw Xn+1 ∼ P (Xn, ·) and X ′

n+1 ∼ P (X ′
n, ·). Increase n

by 1.

It would not be hard to notice that Xn and X ′
n are marginally updated according to transition

kernel P . Furthermore, since X0 = x and X ′
0 ∼ π(·), we have Xn ∼ Pn(x, ·) and X ′

n ∼ π(·). So,
using the coupling inequality on Xn and X ′

n, we have

∥Pn(x, ·)− π(·)∥ ≤ P(Xn ̸= X ′
n).

The probability on the right will be pretty small using our construction. The second step utilises
the minorisation condition. And when we are outside C and with the two random variables not
being equal, the drift condition (if applicable) ensures that Xn and X ′

n will return to C very
quickly.

Let us have a quick taste of the power of this construction by proving the uniform ergodicity
result.

Proof. (of Uniform Ergodicity (Theorem 2.9)) Since we know C = X from the conditions of the
theorem, the coupling construction will only use Step 1 and Step 2. Step 1 ensures that once the
two random variables are the same, they will stay the same. Step 2 (a) ensures that, for every
n0 steps, the two random variables will be the same (drawn from ν(·)) with a probability of at
least ε, as they could have been equal to start with. This means, if we have n = n0m for some
integer m, then we have

∥Pn(x, ·)− π(·)∥ ≤ P(Xn ̸= X ′
n) ≤ (1− ε)m = (1− ε)n/n0 .

Now, n might not always be a multiple of n0. For some m and n ∈ (mn0, (m1)n0 − 1], we have

∥Pn(x, ·)− π(·)∥ ≤ ∥Pmn0(x, ·)− π(·)∥

using Proposition 2.2 (c). Therefore, we have the desired inequality

∥Pn(x, ·)− π(·)∥ ≤ (1− ε)⌊n/n0⌋

for all n.
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2.3.2 Proof of Geometric Ergodicity (Theorem 2.12)

We will prove here the geometric ergodicity result. Notice that since we no longer have the
condition that C = X , we will inevitably use Step 3 of the coupling construction. The idea is
that, when Xn and X ′

n are not equal and not both in C, they will return to C quickly.

Recall from earlier the drift condition: A Markov chain is said to satisfy a drift condition if
there are constants λ ∈ (0, 1), b <∞, and a Lyapunov function V : X → [1,∞] such that

PV ≤ λV + b1C

i.e.
∫
X P (x, dy)V (y) ≤ λV (x) + b1C(x) for all x ∈ X .

We will require a modified condition. Consider P with

Ph(x, y) =

∫
X

∫
X
h(z, w)P (x, dz)P (y, dw)

which represents the kernel of running two independent copies of the chain with transition kernel
P . The bivariate drift condition states that

Ph(x, y) ≤ h(x, y)

α

for (x, y) /∈ C × C, some h : X × X → [1,∞) and some α > 1.

This bivariate drift condition is closely related to the drift condition.

Proposition 2.15. Suppose the drift condition is satisfied for some V : X → [1,∞], C ⊆ X ,
λ < 1, and b <∞. Let d := infx∈X\C V (x). Then, if

d >
b

1− λ
− 1,

then the bivariate drift condition is satisfied for the same C with h(x, y) = [V (x) + V (y)]/2 and
α−1 = λ+ b/(d+ 1) < 1.

Proof. If (x, y) /∈ C × C, then we have either x /∈ C or y /∈ C or both. So, h(x, y) = [V (x) +
V (y)]/2 ≥ (d + 1)/2 as V ≥ 1, which means 1 ≤ 2h(x, y)/(d + 1). Furthermore, using the drift
condition, we have

PV (x) + PV (y) ≤ λV (x) + λV (y) + b

as at most one of x and y is not in C. Then, we have

Ph(x, y) =

∫
X

∫
X

1

2
[V (x) + V (y)]P (x, dz)P (y, dw)

=
1

2

[∫
X

∫
X
V (x)P (x, dz)P (y, dw) +

∫
X

∫
X
V (y)P (x, dz)P (y, dw)

]
=

1

2

[∫
X
V (x)P (x, dz) +

∫
X
V (y)P (y, dw)

]
=

1

2
[PV (x) + PV (y)] ≤ 1

2
[λV (x) + λV (y) + b]

= λ

[
1

2
V (x) +

1

2
V (y)

]
+

b

2
= λh(x, y) +

b

2

≤ λh(x, y) +
b

2
2h(x, y)/(d+ 1) = h(x, y)[λ+ b/(d+ 1)].
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We are almost there. The final thing is to check if we really have λ+ b/(d+ 1) < 1. We have

d >
b

1− λ
− 1

d+ 1 >
b

1− λ

1− λ >
b

d+ 1

1 > λ+
b

d+ 1
,

as desired.

Recall that in Step 2(b) of the coupling construction, Xn and X ′
n are drawn from

R(Xn, ·) :=
1

1− ε
[Pn0(Xn, ·)− εν(·)].

We define R similar to that of P . For h(x, y) : X × X → [1,∞), we have

Rh(x, y) :=

∫
X

∫
X
h(z, w)R(x, dz)R(y, dw)

for any (x, y) ∈ C × C. We further define

Bn0
:= max

[
1, αn0(1− ε) sup

C×C
Rh

]
.

Theorem 2.16. Consider a Markov chain on state space X with transition kernel P . Suppose
the drift condition and the bivariate drift condition hold for some C ⊆ X , α > 1, n0 ∈ N, and
ε > 0. Then, for any joint initial distribution L(X0, X

′
0) and any integer j ∈ [1, k], if {Xn} and

{X ′
n} are two copies of the Markov chain starting from L(X0, X

′
0), then

∥L(Xk)− L(X ′
k)∥ ≤ (1− ε)j + α−k(Bn0)

j−1E[h(X0, X
′
0)].

Remark. Since j ≤ k, if we pick a small enough r > 0 and let j = ⌊rk⌋, then the bound would
be exponentially decaying.

Proof. This theorem is proved using the coupling inequality and the coupling construction as
well.

We first assume n0 = 1 for the minorisation condition and prove the theorem under this additional
condition. The modification required for the case n0 > 1 is outlined in Section 4.4 of Roberts
and Rosenthal (2004).

Let Nk := #{m : 0 ≤ m ≤ k, (Xm, X ′
m) ∈ C × C} be the number of times that the pair of

chains visit C between time 0 and time k. Then, coupling inequality gives us

∥P k(x, ·)− π(·)∥ ≤ P(Xk ̸= X ′
k) = P(Xk ̸= X ′

k, Nk−1 ≥ j) + P(Xk ̸= X ′
k, Nk−1 < j).

A bound for each of the two terms is thus needed. It is easy to bound the first term. Notice that
going for Step 2(b), instead of Step 2(a), for j times straight from the start implies that we have
both Xk ̸= X ′

k and Nk−1 ≥ j. The probability of going for Step 2(b) is 1− ε, so we have

P(Xk ̸= X ′
k, Nk−1 ≥ j) ≤ (1− ε)j .
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Now we bound the second term. Let Mk := αkB−Nk−1h(Xk, X
′
k)1{Xk ̸=X′

k} for k = 0, 1, 2, . . ..
We set N−1 = 0. We claim that {Mk} is a supermartingale, i.e. we have

E[Mk+1 | X0, . . . , Xk, X
′
0, . . . , X

′
k] ≤Mk.

A proof of this result can be found in Lemma 13 of Roberts and Rosenthal (2004). With this,
note that since B ≥ 1, we have

P(Xk ̸= X ′
k, Nk−1 < j) = P(Xk ̸= X ′

k, Nk−1 ≤ j − 1)

≤ P(Xk ̸= X ′
k, B

−Nk−1 ≤ B−(j−1))

= P(1{Xk ̸=X′
k}B

−Nk−1 ≤ B−(j−1))

≤ B(j−1)E(1{Xk ̸=X′
k}B

−Nk−1) Markov inequality

≤ B(j−1)E(1{Xk ̸=X′
k}B

−Nk−1h(Xk, X
′
k) h ≥ 1

= B(j−1)α−kE[Mk]

≤ B(j−1)α−kE[M0] {Mk} supermartingale

= B(j−1)α−kE[h(X0, X
′
0)].

So, with the extra condition that n0 = 1, we have

∥P k(x, ·)− π(·)∥ ≤ P(Xk ̸= X ′
k, Nk−1 ≥ j) + P(Xk ̸= X ′

k, Nk−1 < j)

≤ (1− ε)j +B(j−1)α−kE[h(X0, X
′
0)],

as desired for the theorem.

So, if we would like to prove the geometric ergodicity (Theorem 2.12), we just need to make sure
the conditions for quantitative convergence bound (Theorem 2.16) are satisfied when we have
both the drift and minorisation conditions.

Notice that the difference between the conditions for geometric ergodicity and quantitative con-
vergence bound is the additional bivariate drift condition. The bivariate drift condition can be
obtained from the (univariate) drift condition with an extra condition that d := infx∈X\C V (x) >
b/(1− λ)− 1, where b, λ are constants of the (univariate) drift condition. This is established in
Proposition 2.15.

However, we could not prove that this extra condition of d always holds. Extra work is needed
for the case where d < b/(1− λ)− 1, and we direct the readers to Roberts and Rosenthal (2004)
for a proof of that.
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Part II

Langevin Algorithms
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Chapter 3

Unadjusted Langevin Algorithm

Numerical solutions of differential equations have been extensively studied in the mathematical
community. One of the early methods to approximate the solution of an ordinary differential
equation (ODE) is that of the Euler method (Sauer, 2011). Consider the following ODE with
initial condition

d

dt
y = f(t, y), y(0) = y0,

then the Euler method will yield the approximate solutions wi at time ti with these values defined
by

w0 = y0, t0 = 0,

wi+1 = wi + hf(ti, wi), ti+1 = ti + h

for i = 0, 1, 2, . . . . Here, h is a tuning parameter and it denotes the step size of the update.
Naturally, the approximation will be better for smaller values of h.

When we have an SDE instead of an ODE, we will have both the deterministic drift term and a
stochastic diffusion term. The scheme to approximate the solution of an SDE, therefore, needs
to be adjusted. This is known as the Euler-Maruyama Method (Sauer, 2011). Consider the
following SDE with initial condition

dXt = a(Xt, t)dt+ b(Xt, t)dWt, X0 = x0,

where a is the drift function, b is the volatility function, and {Wt} is a Wiener process, then the
Euler-Maruyama method will yield the following approximate solutions wi at time ti with these
values defined by

w0 = x0, t0 = 0,

wi+1 = wi + ha(ti, wi) + zib(ti, wi), ti+1 = ti + h

where zi ∼ N(0, h) are i.i.d. noises and h is the tuning parameter denoting the step size.

So, using the Euler-Maruyama method, we can approximate the k-dimensional Langevin diffusion

dLt =
1

2
∇ log π(Lt)dt+ dBt
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with initial value x0 using step size h :

U0 = x0

Un+1 = Un +
h

2
∇ log π(Un) + ϵn, ϵn ∼ N(0, hIk)

for n = 0, 1, 2, . . .. In fact, we could simply write Un+1 ∼ N(Un+
h
2∇ log π(Un), hIk). This yields

a sequence {Un} which can be used as the output of the MCMC algorithm.

In the Statistics literature, this method is also known as theUnadjusted Langevin Algorithm
(ULA), since this algorithm is essentially MALA but without the Metropolis adjustment step, i.e.
every proposal is accepted. In the machine learning literature, this method is sometimes referred
to as the Langevin Monte Carlo (LMC). Here, we will use ULA to address this algorithm.

Extensive research has been conducted on ULA to study its various theoretical properties.
Roberts and Tweedie (1996a) studied the rate of convergence (if at all) of the approximation to
the target distribution. Dalalyan (2017) obtained a non-asymptotic bound on the convergence of
the approximation of ULA samples, assuming that the target distributions are smooth and log-
concave. Durmus and Moulines (2019) provided further theoretical results on the convergence,
as well as proposed a decaying over dimension scheme for the selection of tuning parameter h of
the algorithm in order to have good convergence properties.

3.1 Geometric Ergodicity of ULA

Here, we will show the geometric ergodicity of ULA for a specific choice of the target distribution.

Proposition 3.1. The Markov chain produced by ULA with one-dimensional target distribution
π ∝ exp(−x2/2) and tuning parameter h with h2 < 2 is geometric ergodic.

Proof. By Proposition 2.13, we just need to check for

lim sup
|x|→∞

PV (x)

V (x)
= lim sup

|x|→∞

∫
V (y)

V (x)
P (x, dy) < 1.

Consider V (x) = es|x| for some s > 0. We have, where ξ ∼ N(0, h2),∫
V (y)

V (x)
P (x, dy) = Eξ

[
exp[s|x+ h2/2(−x) + ξ|

es|x|

]
= Eξ

[
exp[s|x− h2/2x+ ξ| − s|x|]

]
≤ Eξ

[
exp[s|x− h2/2x|+ s|ξ| − s|x|]

]
= Eξ

[
exp[s|1− h2/2||x|+ s|ξ| − s|x|]

]
= Eξ

[
es|ξ|

]
exp[s|1− h2/2||x| − s|x|]

= Eξ

[
es|ξ|

]
exp[−sh2/2|x|].

Notice that Eξ[e
s|ξ|] is a positive constant for any fixed s, and exp[−sh2/2|x|]→ 0 as |x| → ∞.

Therefore, for large enough |x|, we have

lim sup
|x|→∞

∫
V (y)

V (x)
P (x, dy) = lim

|x|→∞

∫
V (y)

V (x)
P (x, dy) = 0 < 1,
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as desired.

We also have the following more general geometric ergodicity result.

For some fix d, we define

S+
d := lim

x→∞

h

2
∇ log π(x)x−d

and

S−
d := lim

x→−∞

h

2
∇ log π(x)|x|−d

Theorem 3.2 (Theorem 3.1 of Roberts and Tweedie (1996a)). The ULA chain Un is geomet-
rically ergodic if one of the following holds:

1. for some d ∈ [0, 1), both S+
d < 0 and S−

d > 0 exist.
2. for d = 1, both S+

d < 0 and S−
d > 0 exist, and (1 + S+

d )(1− S−
d ) < 1.

In the above special case, we have d = 1, S+
d = −h/2, and S−

d = h/2. Given h2 < 2, we would
certainly have (1 + S+

d )(1− S−
d ) < 1.
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Chapter 4

ULA Convergence Rate for
Smooth and Log-Concave Targets

4.1 Motivation

Existing convergence bounds of MCMC algorithms, at least before Dalalyan (2017), tend to be
of two types: asymptotic bounds that depend on dimension derived from scaling arguments, and
relatively loose non-asymptotic geometric ergodicity bounds using the drift and minorisation
argument (Qin and Hobert, 2021). We would like to have tighter bounds in order to better
understand and assess the quality of the various MCMC algorithms.

The non-asymptotic bounds using the drift and minorisation argument impose mild conditions on
the target distribution. As a result, the bounds obtained are loose, especially when the dimension
of the target distribution is high (Qin and Hobert, 2021). One could obtain much tighter bounds
by imposing stronger conditions on the target distribution, and this is the approach taken in
Dalalyan (2017).

Dalalyan (2017) borrowed insights from the (convex) optimisation literature and imposed smooth-
ness conditions on the target distribution. Later works on the convergence bounds of MCMC
algorithms, such as Dwivedi et al. (2018) and Andrieu et al. (2022), followed the same trend of
imposing strong conditions on the target distribution.

In Dalalyan (2017), the author focused on one particular MCMC algorithm, the Unadjusted
Langevin Algorithm (ULA), and aimed to study its quality when we try to sample from distri-
butions with certain good and relatively realistic properties. By the quality of ULA, we really
mean the rate of convergence of the approximation (in the form of the total variation distance
between the sample and the target). In this chapter, we will summarise of the results of Dalalyan
(2017) by highlighting the key results and completing with expanded and re-written proofs for
clarity.

The ULA approximation takes two steps. First, we will approximate the target distribution
using a continuous-time Langevin diffusion. Second, we will approximate the continuous-time
Langevin diffusion using a discretised Langevin diffusion. The following diagram illustrates this
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relationship.

Target Distribution←→ Distribution of L. Diffusion ←→ Distribution of Discretised L.

The overall approximation error is bounded by the sum of two bounds from each step.

4.2 Setup

We assume the densities of target distribution π are of the form e−f where f is a function that
(i) is strongly convex, and (ii) has a Lipschitz continuous gradient. That is, for f : Rn → R,
there exists two positive constants m and M such that{

f(θ)− f(θ̄)−∇f(θ̄)T (θ − θ̄) ≥ m
2 ||θ − θ̄||22,

||∇f(θ)−∇f(θ̄)||2 ≤M ||θ − θ̄||2
(4.1)

for all θ, θ̄ ∈ Rn. We will call f convex and exp(−f) strongly log-concave if f satisfies the first
inequality above, and exp(−f) simply as log-concave if it satisfies it with m = 0.

At this point, we establish a Lemma that will be used later on.

Lemma 4.1 (Lemma 1.2.3 in Nesterov (2003)). If the function f satisfies the second inequality
in (4.1), then

f(θ)− f(θ̄)−∇f(θ̄)⊤(θ − θ̄) ≤ M

2
||θ − θ̄||22

for all θ, θ̄ ∈ Rn.

There are two notions of divergence that will be used later on. For two probability measures µ
and ν defined on a space X such that µ is absolutely continuous with respect to ν (i.e. for any
set E with ν(E) = 0 we have µ(E) = 0. This enables us to define Radon-Nikodym derivatives),
the Kullback-Leibler and χ2 divergences between µ and ν are respectively defined as (Dalalyan,
2017)

KL(µ∥ν) =
∫
X
log

(
dµ

dν
(x)

)
µ(dx), χ2(µ∥ν) =

∫
X

(
dµ

dν
(x)− 1

)2

ν(dx).

4.3 Error 1

The unadjusted Langevin algorithm (ULA) is similar to gradient descent, but involves an addi-
tional step of random perturbation.

Starting from an initial position θ(0) ∈ Rn, the subsequent steps are updated based on the
following update rule:

θ(k+1,h) = θ(k,h) − h∇f(θ(k,h)) +
√
2hξ(k+1) (4.2)

for k = 0, 1, 2, · · · , h > 0 be the tuning parameter that is often referred to as the step-size, and
a sequence of i.i.d. ξ(0), ξ(1) · · · that are multivariate standard normal and independent of θ(0).
The target distribution has a density proportional to exp(−f).

Recall that ULA is the Euler discretisation of the Langevin diffusion {Lt : t ∈ R+} with invariant
density π and characterised by the SDE

dLt = −∇f(Lt) dt+
√
2dWt. (4.3)
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When f satisfies condition (4.1), equation (4.3) has a unique strong solution which is a Markov
process. The transition kernel of this process is denoted by P t

L(x, ·) with P t
L(x,A) = P (Lt ∈

A|L0 = x) for all Borel sets A ⊂ Rn and any initial condition x ∈ Rn. These results are shown
in Roberts and Tweedie (1996a).

Condition (4.1) yields the spectral gap property of the semigroup {P t
L : t ∈ R+}, which then

implies that the process Lt is geometrically ergodic in the following sense:

Lemma 4.2. Under condition 4.1, for any probability density ν,

||νP t
L − π||TV ≤

1

2
χ2(ν||π)1/2e−tm/2, ∀t ≥ 0.

Remark. This provides the bound for the first estimation error, between the target distribution
and the distribution of {Lt}, as described at the beginning of this chapter. Also, ∥ · ∥TV is the
total variation distance.

Proof. First, notice that under condition (4.1), the process {Lt} is geometrically ergodic in
L2(Rn, π), that is: ∫

Rn

(E[φ(Lt)|L0 = x]− Eπ[φ(θ)])
2 dπ ≤ e−tmEπ[φ

2(θ)]

for every t > 0 and every φ ∈ L2(Rn, π). This is a well-known result (Dalalyan, 2017).

By the definition of the total variation distance and the fact that π is the invariant density of
the semigroup {P t

L}, we have

||νP t
L − π||TV = sup

A

∣∣∣ ∫
Rn

P t
L(x,A) dν − π(A)

∣∣∣
= sup

A

∣∣∣ ∫
Rn

P t
L(x,A) dν −

∫
Rn

π(A) dν
∣∣∣

= sup
A

∣∣∣ ∫
Rn

(P t
L(x,A)− π(A)) dν

∣∣∣
= sup

A

∣∣∣ ∫
Rn

(P t
L(x,A)− π(A))ν(x) dx−

∫
Rn

(P t
L(x,A)π(x)− π(A)π(x)) dx

∣∣∣
since π is the invariant distribution of P t

L

= sup
A

∣∣∣ ∫
Rn

(P t
L(x,A)− π(A))(ν(x)− π(x)) dx

∣∣∣
≤ sup

A

∫
Rn

∣∣∣P t
L(x,A)− π(A)

∣∣∣∣∣∣ν(x)
π(x)

− 1
∣∣∣π(x) dx

using integral form of triangle inequality

≤ sup
A

(∫
Rn

∣∣∣P t
L(x,A)− π(A)

∣∣∣2π(x) dx)1/2

χ2(ν||π)1/2

using Cauchy-Schwartz inequality.

Here, the supremum is taken over all possible elements of the Borel set of Rn.
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Next, for every fixed Borel set A, if we set φ(x) = 1A(x) − π(A) and use the first inequality of
this proof, we get∫

Rn

∣∣∣P t
L(x,A)− π(A)

∣∣∣2π(x) dx =

∫
Rn

(E[φ(Lt)|L0 = x]− Eπ[φ(θ)])
2 dπ

≤ e−tmEπ[φ
2(θ)]

= e−tmπ(A)(1− π(A))

≤ 1

4
e−tm.

Combining what we have shown so far, we get

||νP t
L − π||TV ≤ sup

A

(∫
Rn

∣∣∣P t
L(x,A)− π(A)

∣∣∣2π(x) dx)1/2

χ2(ν||π)1/2

≤ sup
A

(1
4
e−tm

)1/2

χ2(ν||π)1/2

=
1

2
χ2(ν||π)1/2e−tm/2,

as desired.

Lemma 4.2 shows that for large values of t, the distribution of Lt approaches exponentially fast
to the target distribution π. Due to this, ULA aims to then approximate P t

L by θ(k,h) where
t = kh, in order to reach π.

−

The first and probably the most influential work providing probabilistic analysis of asymptotic
properties of the ULA is Roberts and Tweedie (1996a). However, one of the recommendations
made by the authors of that paper is that the ergodicity of the Markov chain generated by the
Langevin algorithm is very sensitive to the choice of the tuning parameter h and a bad choice will
lead to the transience of the chain. However, as we will show in the following Proposition 4.3,
under the strong convexity assumption on f as well as the Lipschitz continuity of its gradient,
we can ensure the non-transience of the Markov chain {θ(k,h)} as long as h ≤ 1/M .

Proposition 4.3. Let the function f be continuously differentiable on Rn and satisfy (4.1) with
f∗ = infx∈Rn f(x). Then, for every h ≤ 1/M , we have

E[f(θ(k,h))− f∗] ≤ (1−mh)kE[f(θ(0))− f∗] +
Mn

m
.

This result is implied by a stronger result that we will prove next.

Proposition 4.4. Let the function f be continuously differentiable on Rn and satisfy (4.1) with
f∗ = infx∈Rn f(x). Then, for every h ≤ 1/M , we have

E[f(θ(k,h))− f∗] ≤ (1−mh)kE[f(θ(0))− f∗] +
Mn

m(2−Mh)
.

Proof. To simplify the proof, we will use the shorthand notation f (k) = f(θ(k,h)) and ∇f (k) =
∇f(θ(k,h)). Due to strong convexity of f , we have (Boyd and Vandenberghe (2004), p459)

f (k+1) = f (k) + (∇f (k))⊤(θ(k+1,h) − θ(k,h)) +
1

2
(θ(k+1,h) − θ(k,h))⊤∇2f(z)(θ(k+1,h) − θ(k,h))
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for some z between θ(k,h) and θ(k+1,h).

Next, (4.1) implies that ∇2f (x) ⪯MI, which means the above equality becomes

f (k+1) ≤ f (k) + (∇f (k))⊤(θ(k+1,h) − θ(k,h)) +
1

2
M ||θ(k+1,h) − θ(k,h)||22,

where ∥ · ∥2 is the L2 / Euclidean norm.

Using the ULA update rule θ(k+1,h) = θ(k,h) − h∇f (k) +
√
2h ε(k+1) where the εs are standard

Gaussian, we have

f (k+1) ≤ f (k) + (∇f (k))⊤(−h∇f (k) +
√
2h ε(k+1)) +

1

2
M || − h∇f (k) +

√
2h ε(k+1)||22

= f (k) − h||∇f (k)||22 +
√
2h(∇f (k))⊤ε(k+1) +

1

2
M ||h∇f (k) −

√
2h ε(k+1)||22.

Taking expectation on both sides, we get

E(f (k+1)) ≤ E(f (k))− hE[||∇f (k)||22] + 0 +
M

2
E[||h∇f (k) −

√
2h ε(k+1)||22].

If we focus on the expectation of the last term in the above inequality, we have

E[||h∇f (k) −
√
2h ε(k+1)||22] = E[(h∇f (k) −

√
2h ε(k+1))⊤(h∇f (k) −

√
2h ε(k+1))]

= E[h2(∇f (k))⊤∇f (k) − (∇f (k))⊤
√
2h ε(k+1))− (

√
2h ε(k+1))⊤∇f (k)

+ 2h ε(k+1)ε(k+1))]

= h2E[||∇f (k)||22] + 2hn

The last term is 2hn since the variance of each ε is 1 and there are n of them.

With this, we get

E(f (k+1)) ≤ E(f (k))− hE[||∇f (k)||22] + 0 +
M

2
E[||h∇f (k) −

√
2h ε(k+1)||22]

≤ E(f (k))− hE[||∇f (k)||22] +
M

2
(h2E[||∇f (k)||22] + 2hn)

= E(f (k))− (h− h2M

2
)E[||∇f (k)||22] +Mhn.

Due to strong convexity of f , we have (Boyd and Vandenberghe (2004), p460) f∗ − f(x) ≥
− 1

2m ||∇f(x)||
2
2 and thus

||∇f (k)||22 ≥ 2m(f (k) − f∗).

If we set x = θ(k,h) of the above inequality and apply it to the inequality of E(f (k+1)), we get,
when h− h2M/2 > 0, or equivalently h < 2/M ,

E(f (k+1)) ≤ E(f (k))− (h− h2M

2
)E[||∇f (k)||22] +Mhn

≤ E(f (k))− (2mh−mh2M)E[(f (k) − f∗)] +Mhn.

Note that the condition on h is satisfied with the conditions of this proposition.
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We set γ := 2mh−mh2M ∈ (0, 1) for any 0 < h < 2/M . Subtracting f∗ from both sides of the
above inequality gives us

E[f (k+1)]− f∗ ≤ E(f (k))− f∗ − γE[f(x)− f∗] +Mhn

E[f (k+1) − f∗] ≤ E(f (k) − f∗)− γE[f(x)− f∗] +Mhn

E[f (k+1) − f∗] ≤ (1− γ)E[f (k) − f∗] +Mhn.

Applying the inequality recursively gives us

E[f (k+1) − f∗] ≤ (1− γ)E[f (k) − f∗] +Mhn

≤ (1− γ)2E[f (k−1) − f∗] +Mhn(1− γ) +Mhn

· · ·
≤ (1− γ)k+1E[f (0) − f∗] +Mhn(1 + (1− γ) + · · ·+ (1− γ)k)

≤ (1− γ)k+1E[f (0) − f∗] +Mhn(

∞∑
i=0

(1− γ)i)

≤ (1− γ)k+1E[f (0) − f∗] +Mhnγ−1.

If we swap γ := 2mh−mh2M back, we would thus get

E[f(θ(k,h))− f∗] ≤ (1− 2mh+mh2M)kE[f (0) − f∗] +
Mhn

2mh−mh2M

≤ (1−mh)kE[f (0) − f∗] +
Mn

m(2−Mh)

since h < 1/M as given in the proposition. The proof is completed.

This proposition has a corollary, which will be used in the next section.

Corollary 4.5. Let h ≤ 1/(αM) with α ≥ 1 and integer K ≥ 1. Under the conditions of
Proposition 4.4, it holds that

h

K−1∑
k=0

E[||∇f(θ(k,h))||22] ≤
Mα

2α− 1
E[||θ(0) − θ∗||22] +

2αMKhn

2α− 1
.

Proof. From the condition on h, we can get the following inequality after some simple manipu-
lations.

h ≤ 1

αM

Mh ≤ 1

α

2−Mh ≥ 2− 1

α
=

2α− 1

α

Then, using the inequality obtained in the proof of Proposition 4.4

E(f (k+1)) ≤ E(f (k))− (h− h2M

2
)E[||∇f (k)||22] +Mhn,
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and the inequality with h obtained recently, we have

E(f (k+1)) ≤ E(f (k))− (h− h2M

2
)E[||∇f (k)||22] +Mhn

E[f (k) − f (k+1)] +Mhn ≥ 1

2
h(2−Mh)E[||∇f (k)||22]

≥ 1

2
h
2α− 1

α
E[||∇f (k)||22]

=
h(2α− 1)

2α
E[||∇f (k)||22]

for all k ∈ N.

If we sum up k = 0, 1, · · · ,K − 1, we get

K−1∑
k=0

h(2α− 1)

2α
E[||∇f (k)||22] ≤

K−1∑
k=0

E[f (k) − f (k+1)] +

K−1∑
k=0

Mhn

h

K−1∑
k=0

2α− 1

2α
E[||∇f (k)||22] ≤ E[

K−1∑
k=0

(f (k) − f (k+1))] +KMhn

h

K−1∑
k=0

E[||∇f (k)||22] ≤
2α

2α− 1
E[f (0) − f (K)] +

2α

2α− 1
KMhn

≤ 2α

2α− 1
E[f (0) − f∗] +

2α

2α− 1
KMhn

with the last step due to the fact that f (K) ≥ f∗ by definition of f∗.

Using Lemma 4.1 with θ = θ(0) and θ̄ = θ∗, and taking the expectation, we get

E[f (0) − f∗]− E[∇f∗⊤(f (0) − f∗)] ≤ M

2
E[||θ(0) − θ∗||22],

which is just
2E[f (0) − f∗] ≤ME[||θ(0) − θ∗||22]

as f∗ being the global minimum implies ∇f∗ = 0.

Substituting this result to our previously established inequality yields

h

K−1∑
k=0

E[||∇f(θ(k,h))||22] ≤
Mα

2α− 1
E[||θ(0) − θ∗||22] +

2αMKhn

2α− 1
,

as desired.

4.4 Error 2

To study the approximation error between the distribution of LKh from the continuous-time
Langevin diffusion and θ(k,h) of the discretised process generated by Equation (4.2), we need to
find another continuous-time process that coincides with θ(k,h) at certain times. We will then
compare the two continuous-time processes to obtain Error 2.
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We first introduce a continuous-time Markov process {Dt : t ≥ 0} such that the distribution of the
random vectors (θ(0), θ(1,h), · · · , θ(K,h)) and (D0, Dh, · · · , DKh) coincide. To be more precise, we
introduce a diffusion-type continuous-time process D obeying the following stochastic differential
equation:

dDt = bt(D)dt+
√
2dWt, t ≥ 0, D0 = θ(0) (4.4)

with the (nonanticipative) drift bt(D) = −
∑∞

k=0∇f(Dkh)1[kh,(k+1)h](t). By integrating the
last equation on the interval [kh, (k + 1)h], we check that the increments of this process satisfy
D(k+1)h − Dkh = −h∇f(Dkh) +

√
2hζ(k+1), where ζ(k) = (W(k+1)h − Wkh)/

√
h. Since the

Brownian motion is a Gaussian process with independent increments, we conclude that {ζ(k) :
k = 1, 2, · · · ,K} is a sequence of i.i.d. standard Gaussian random vectors. This implies that the
distribution of the random vectors (θ(0), θ(1,h), · · · , θ(K,h)) and (D0, Dh, · · · , DKh) coincide.

If for some B > 0, the nonanticipative drift function b : C(R+,Rn) × R+ → Rn satisfies the
inequality ||b(D, t)||2 ≤ B(1 + ||D||∞) for every t ∈ [0,Kh] and every D ∈ C(R+,Rn), then

the Kullback-Leibler divergence between Px,Kh
L and Px,Kh

D , the distributions of the processes
{Lt : t ∈ [0,Kh]} and {Dt : t ∈ [0,Kh]} with the initial value L0 = D0 = x, is given by

KL(Px,Kh
L ||Px,Kh

D ) =
1

4

∫ Kh

0

E[||∇f(Dt) + bt(D)]||22] dt. (4.5)

The last equality remains valid even when the initial values of the processes are random but have
the same distribution.

−

We are ready to show the bound of Error 2.

Lemma 4.6. Let f : Rn → R be a function satisfying the second inequality in (4.1) and θ∗ ∈ Rn

be a stationary point (i.e. ∇f(θ∗) = 0). For any T > 0, let Px,T
L and Px,T

D be respectively
the distributions of the Langevin diffusion (4.3) and its approximation (4.4) on the space of all
continuous paths on [0, T ] with values in Rn, with a fixed initial value x. Then, if h ≤ 1/(αM)
with α ≥ 1, it holds that

KL(Px,Kh
L ||Px,Kh

D ) ≤ M3h2α

12(2α− 1)
(||x− θ∗||22 + 2Khn) +

nKM2h2

4
.

Proof. Setting T = Kh and using (4.5), we get

KL(Px,T
L ||P

x,T
D ) =

1

4

∫ T

0

E[||∇f(Dt) + bt(D)]||22] dt

=
1

4

K−1∑
k=0

∫ (k+1)h

kh

E[||∇f(Dt)−∇f(Dkh)]||22] dt

using the fact that bt(D) = −
∑∞

k=0∇f(Dkh)1[kh,(k+1)h](t).

Since ∇f is Lipschitz continuous with Lipschitz constant M , i.e. ||∇f(θ)−∇f(θ̄)||22 ≤M2||θ −
θ̄||22, we have

KL(Px,T
L ||P

x,T
D ) ≤ M2

4

K−1∑
k=0

∫ (k+1)h

kh

E[||Dt −Dkh]||22] dt

30



From Equation (4.4) dDt = bt(D)dt+
√
2dWt, we will integrate this SDE over t and kh where t

is between kh and (k + 1)h. This gives

Dt = Dkh +

∫ t

kh

bs(D)ds+
√
2

∫ t

kh

dWs,

which, if we apply the definition of bs(D) as well as the computation rule of stochastic integral,
is equivalent to the following:

Dt −Dkh = −(t− kh)∇f(Dkh) +
√
2(t− kh)ζ.

Then, we have

||Dt −Dkh||22 = [Dt −Dkh]
⊤[Dt −Dkh]

= (t− kh)2||∇f(Dkh)||22 − (t− kh)
√
2(t− kh)∇f(Dkh)

⊤ζ

− (t− kh)
√
2(t− kh)ζ⊤∇f(Dkh) + 2(t− kh)ζ⊤ζ.

Taking expectation, we get

E[||Dt −Dkh||22] = (t− kh)2E[||∇f(Dkh)||22]− (t− kh)
√
2(t− kh)E[∇f(Dkh)

⊤ζ]

− (t− kh)
√
2(t− kh)E[ζ⊤∇f(Dkh)] + 2(t− kh)E[ζ⊤ζ]

= (t− kh)2E[||∇f(Dkh)||22] + 2n(t− kh).

The above workings occurred similarly in the proof of Proposition 4.4. Substituting this equality
into the inequality of KL divergence, we get

KL(Px,T
L ||P

x,T
D ) ≤ M2

4

K−1∑
k=0

∫ (k+1)h

kh

E[||Dt −Dkh]||22] dt

=
M2

4

K−1∑
k=0

∫ (k+1)h

kh

(t− kh)2E[||∇f(Dkh)||22] + 2n(t− kh) dt

=
M2

4

K−1∑
k=0

∫ (k+1)h

kh

(t− kh)2E[||∇f(Dkh)||22] dt+
M2

4

K−1∑
k=0

∫ (k+1)h

kh

2n(t− kh) dt

=
M2

4

K−1∑
k=0

E[||∇f(Dkh)||22]
∫ (k+1)h

kh

(t− kh)2 dt+
M2

4

K−1∑
k=0

∫ (k+1)h

kh

2n(t− kh) dt

=
M2h3

12

K−1∑
k=0

E[||∇f(Dkh)||22] +
nKM2h2

4

=
M2h3

12

K−1∑
k=0

E[||∇f(θ(k,h))||22] +
nKM2h2

4
.
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Applying Corollary 4.5, we could obtain

KL(Px,T
L ||P

x,T
D ) ≤ M2h2

12

{
h

K−1∑
k=0

E[||∇f(θ(k,h))||22]
}
+

nKM2h2

4

≤ M2h2

12

{ Mα

2α− 1
E[||θ(0) − θ∗||22] +

2αMKhn

2α− 1

}
+

nKM2h2

4

≤ M2h2

12

{ Mα

2α− 1
||x− θ∗||22 +

2αMKhn

2α− 1

}
+

nKM2h2

4

≤ M3h2α

12(2α− 1)
(||x− θ∗||22 + 2Khn) +

nKM2h2

4
,

as desired.

We can set T = Kh, and assume that the initial value of the ULA follows the distribution
ν ∼ Nn(θ

∗,M−1In) where θ∗ is a stationary point of f and M is the constant in (4.1). In this
case, the equation of Lemma 4.6 becomes

KL(νPx,T
L ||νP

x,T
D ) ≤ M3h2α

12(2α− 1)
(E[||θ(0) − θ∗||22] + 2Khn) +

nKM2h2

4

=
M3h2α

12(2α− 1)
(M−1n+ 2Khn) +

nKM2h2

4

=
nM2h2α

12(2α− 1)
+

nM3h3αK

6(2α− 1)
+

nKM2h2

4

=
nM2h2α

12(2α− 1)
+

nM3Th2α

6(2α− 1)
+

nM2Th

4

=
nM2Th

4

( α

3K(2α− 1)
+

2Mhα

3(2α− 1)
+ 1

)
.

For K ≥ α and h ≤ 1/(αM), we have

α

3K(2α− 1)
≤ 1

3(2α− 1)

and
2Mhα

3(2α− 1)
≤ 2

3(2α− 1)
,

so
α

3K(2α− 1)
+

2Mhα

3(2α− 1)
+ 1 ≤ 1

3(2α− 1)
+

2

3(2α− 1)
− 1 =

2α

(2α− 1)
.

Thus, we have

KL(νPx,T
L ||νP

x,T
D ) ≤ nM2Thα

2(2α− 1)
. (4.6)

This equation is going to be used later when we prove Theorem 4.8
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4.5 Main Result

We are almost ready to establish the main Theorem. But first, we need one auxiliary lemma.

Lemma 4.7. Let us denote by νh,x the conditional density of θ(1,h) given θ(0) = x, where the
sequence {θ(k,h)}k∈N is defined by (4.2) with a function f satisfying (4.1). In other terms, νh,x
is the density of the Gaussian distribution Nn(x− h∇f(x), 2hIn). If h ≤ 1/(2M), then

E
[νh,x(θ)2

π(θ)2

]
≤ exp

{ 1

2m
||∇f(x)||22 −

n

2
log(2hm)

}
.

Theorem 4.8. Let f : Rn → R be a function satisfying (4.1) and θ∗ ∈ Rn be its global minimum
point. Assume that for some α ≥ 1, we have h ≤ 1/(αM) and K ≥ α. Then, for any time horizon
T = Kh, the total variation distance between the target distribution Pπ and the approximation
νPK

θ furnished by the ULA with initial distribution ν ∼ Nn(θ
∗,M−1In) satisfies

||νPK
θ − Pπ||TV ≤

1

2
exp

{n

4
log(

M

m
)− Tm

2

}
+

{nM2Thα

4(2α− 1)

}1/2

.

Remark. The second term in the right-hand side of the above inequality tends to infinity when
T = Kh tends to infinity and h remains fixed.

Proof. The bound consists of two partial bounds.

Target Distribution ←→ Distribution of {Lt} ←→ Distribution of {θ(k,h)}

Using triangle inequality, we have

||νPK
θ − Pπ||TV = ||νPKh

D − Pπ||TV ≤ ||νPT
L − Pπ||TV + ||νPT

D − νPT
L ||TV.

The first term of the very right-hand side is the approximation of the first arrow (between
Target Distribution and Distribution of {θ(k,h)}), and the second term is the approximation by
the second arrow. Two approximation bounds have been established more or less previously, and
a minimum amount of work is required here to connect the established dots.

The first term requires Lemma 4.2. This result gives us

||νPT
L − Pπ||TV ≤

1

2
χ2(ν||π)1/2e−Tm/2.

By definition of χ2 divergence, we have

χ2(ν||π) =
∫ (dν

dπ
(x)− 1

)2

π(dx)

= Eπ

(dν
dπ

(x)− 1
)2

= Eπ

(ν
π
(x)− 1

)2

since we can view ν = dν/dL where L is the Lebesgue measure, same goes for π

= Eπ

(ν2
π2

(x)− 2
ν

π
(x) + 1

)
= Eπ

(ν2
π2

(x)
)
− 1.
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Notice that Lemma 4.7 involves νh,x which is the density of Nn(x − h∇f(x), 2hIn). Here, our
ν is the density of ν ∼ Nn(θ

∗,M−1In), which is ν1/(2M),θ∗ and this satisfies the condition of
Lemma 4.7. So, applying it to the first term above, we get

Eπ

(ν2
π2

(x)
)
≤ exp

{ 1

2m
||∇f(θ∗)||22 −

n

2
log(2m/(2M))

}
= exp

{
− n

2
log(m/M)

}
= exp

{n

2
log

(M
m

)}
.

Note that M/m in the last line above is known as the condition number for the distribution with
density proportional to e−f . This is a significant quantity in general that it is worth taking note
of.

So, we have

∥νPT
L − Pπ∥TV ≤

1

2
χ2(ν||π)1/2e−Tm/2 ≤ 1

2
exp

{n

4
log

(M
m

)
− Tm

2

}
,

which settles the first error.

The next error is a simple application of the Pinsker inequality. The Pinsker inequality states
that, for two probability distributions P and Q, we have

||P −Q||TV ≤
(1
2
KL(P ||Q)

)1/2

.

Using this, we have

||νPT
D − νPT

L ||TV ≤
(1
2
KL(νPT

D ||νPT
L )

)1/2

≤
(nM2Thα

4(2α− 1)

)1/2

,

where the last inequality is due to Equation (4.6).

Thus, combining the pieces, we have

||νPK
θ − Pπ||TV ≤ ||νPT

L − Pπ||TV + ||νPT
D − νPT

L ||TV

≤ 1

2
exp

{n

4
log

(
M

m

)
− Tm

2

}
+
{nM2Thα

4(2α− 1)

}1/2

as desired.

4.6 Discussion

The above theorem provides a non-asymptotic bound on mixing time that can be used to defini-
tively state whether the chain is sufficiently close to equilibrium or not.

There are two natural questions we could ask at this stage. First, under similar conditions, can
we establish similar convergence bounds for other common MCMC algorithms? Second, how
realistic are the assumptions imposed on the target distribution?

Many results have been established since Dalalyan (2017). Works such as Dwivedi et al. (2018)
and Chewi et al. (2020) are all imposing the same type of conditions on the target distribution.
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There have been a significant amount of work done in recent years in this area, and many of
them are summarised in the unfinished draft of Chewi (2023).

Now, is log-concave a realistic assumption? There are common distributions that are log-concave,
such as the normal distribution and the exponential distribution. However, some frequently used
distributions are not log-concave, such as the Student’s t-distribution. Therefore, we should
certainly not stop at log-concavity. Recently, there have been attempts at moving towards non-
log-concavity (Chewi et al., 2022).
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Part III

Barker Algorithms
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Chapter 5

The Barker Proposal

5.1 Background

Since the genesis of the Metropolis-Hastings algorithm, there have been a lot of discussions
focusing on what a good proposal kernel could be. Among them, there are a few that stand
out: random walk Metropolis (RWM), Metropolis adjusted Langevin algorithm (MALA), and
Hamiltonian Monte Carlo (HMC). RWM employs a simple centred normal distribution as the
proposal kernel and its standard deviation is the tuning parameter. MALA, on the other side,
exploits the gradient information of the target distribution and uses that to drift towards the
direction of the region of higher probability of the target distribution. HMC can be viewed as
an extension of MALA, by doing multiple MALA proposals at each update step. To simplify the
discussion, let us focus mostly on RWM and MALA.

In modern-day practices, the target distributions of MCMC algorithms tend to be high dimen-
sional. So it is only natural for us to consider how well various MCMC algorithms scale over
dimensions. It turns out that if we assess the quality of an MCMC algorithm using expected
squared jump distance (ESJD), we could notice that MALA scales much better than RWM
(Livingstone and Zanella, 2022).

Another concern in practice is about the tuning of the MCMC algorithm parameter. Some
guidelines do exist for parameter tuning by looking at the value of the acceptance rate (see
Roberts and Rosenthal (2001) for a survey on various scaling results), and they allow us to use
the algorithms adaptively by adjusting the parameter on the fly (Andrieu and Thoms, 2008).
The problem, however, is that a small perturbation of the tuning parameter may cause a large
impact on the spectral gap, which is strongly related to the quality of the generated samples
(Rosenthal, 2003). This problem results in difficulties in fine-tuning parameters, and it will
become more apparent when the algorithms are implemented adaptively as the perturbation
issue gets compounded. As illustrated theoretically in Livingstone and Zanella (2022), MALA
and HMC have poor robustness to tuning (using the language of the mentioned paper) while
RWM has better robustness.

Of course, there is always the elementary problem of all MCMC algorithms - does it converge
quickly? We would be preliminarily satisfied with the algorithm’s quality of convergence once
we have established its geometric ergodicity.
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Combining all the above issues, an algorithm with good scaling over dimension property, robust-
ness to tuning, and geometric ergodicity all at once would be desirable. And one such algorithm
is the Barker proposal, introduced in Livingstone and Zanella (2022).

5.2 Algorithm

In this section, we will present the algorithm of the Barker proposal. The Barker proposal is still
under the framework of MH algorithms, but its proposal kernel is drastically different from the
existing algorithms. The algorithm invokes the gradient information of the target distribution,
similar to algorithms such as MALA and HMC. However, the way gradient information is incor-
porated into the algorithm is different from that of MALA and HMC. Instead of directly having
a drift towards the gradient, the gradient information skews the symmetric noise (say N(0, σ2))
towards the direction of the gradient. This circumvents the problem of MALA and HMC when
the algorithm is at a place with a huge gradient, as in those cases the proposed step will move
too far and skip over the entire region of high probability.

The following is the one-dimensional Barker algorithm. Let the target distribution be π(·), the
current position be x, and q(·) be some symmetrical density. The following is how the Barker
algorithm generates a proposal at each step. This proposal is then fed into the standard MH
algorithm.

Algorithm 3 One-Dimensional Proposal of Barker

Require: Target distribution π, current position x, symmetric density q
1: Draw z ∼ q(·)
2:

b =

{
+1 with probability 1/[1 + exp(−z∇ log π(x))]

−1 elsewise

3: y = x+ b · z

Next, we will look at the n-dimensional Barker algorithm. There are two immediate ways
of extending the above algorithm, and their difference lies in how we could extend b. The
first way is to make no change with the way we pick b, so the probability will simply become
1/[1 + exp(−z⊤∇ log π(x))]. This means we are skewing q towards the average direction of
gradient per component. The second way is to choose a bi for each i = 1, 2, . . . , n so that we are
deciding the direction of skewing for each component independently. The probability will then
become 1/[1 + exp(−zi∂i log π(x))] for component i, where each zi is drawn independently from
q. Figure 5.1, adapted from Hird et al. (2022), illustrates the difference between the two options
in dimension 2.

The second option of deciding the skewing direction component-wise is the one used in Living-
stone and Zanella (2022). It has also been proved via spectral gap that this is the superior choice
in the paper as Proposition 5. Therefore, the proposal of the n-dimensional Barker algorithm
is as follows. Let the target distribution be π(·), the current position be x, and q(·) be some
symmetrical density.

It is natural to ask if it is possible to consider any other options for extending the algorithm into
higher dimensions. Another option is considered in Chapter 7.
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Algorithm 4 n-Dimensional Proposal of Barker

Require: Target distribution π, current position x, symmetric density q
1: Draw z ∼ q(·)
2: for i = 1, 2, . . . , n do
3:

bi =

{
+1 with probability 1

1+exp(−zi∂i log π(x))

−1 elsewise

4: end for
5: y = x+ b · z

π(x) π(x)

Figure 5.1: Illustrative diagrams for two options for proposal in higher dimensions. The white
ball x is the current state, and the sizes of the black balls indicate the probability of moving to
each candidate point.

5.3 Skew-Symmetric Distributions and Balancing Functions

It is therefore natural to ask, at this stage, if the introduced Barker proposal actually satisfies
the desirable properties of good scaling over dimension property, robustness to tuning, and
geometric ergodicity. The answer is a resounding yes. Detailed proofs of these things can be
found in Livingstone and Zanella (2022), and further theoretical analysis can be found in Vogrinc
et al. (2022).

In these papers, one can realise that the nice properties come from two ingredients of the algo-
rithm - a balancing function and a skew-symmetric distribution. By using a balancing function,
we can ensure that the algorithm satisfies the detailed balance equation even though it might
not satisfy it originally (Zanella, 2020), and we call such an algorithm a locally-balanced one.
This ensures the scaling over dimension property, as proved in Vogrinc et al. (2022). The use
of a skew-symmetric distribution as the proposal kernel of the MH algorithm allows us to have
the robustness to tuning property, as inferred from the proof of Theorem 5 of Livingstone and
Zanella (2022).

In the rest of this section, we will restrain ourselves to the algorithm in one dimension and look
at these two ingredients (the balancing function and the skew-symmetric distribution) in detail,
and derive that one would get the Barker proposal naturally if we have the goal in mind to
incorporate both these things in the algorithm.
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5.3.1 Skew-Symmetric Distribution

Let us first consider the candidate transition kernel of the one-dimensional Barker algorithm.
The candidate transition kernel describes the movement of the proposal, before passing through
the Metropolis adjustment step of MH algorithms. We will denote the transition kernel from x
to y = z + x as jx(z). Also, for simplicity of notation, we write βx := ∇ log π(x) and FL(x) :=
1/[1 + e−x]. Also, q is a symmetric distribution. Using these notations, the proposal then
becomes:

Algorithm One-Dimensional Proposal of Barker

Require: Target distribution π, current position x, symmetric density q
1: Draw z ∼ q(·)
2:

b =

{
+1 with probability FL(βxξ)

−1 with probability 1− FL(βxξ)

3: y = x+ b · z

The candidate transition kernel jx(z) can then be derived as follows.

jx(z) = q(z)FL(βxz) + q(−z)[1− FL(−βxz)]

= q(z)FL(βxz) + q(z)[1− FL(−βxz)]

= q(z)

[
1

1 + exp(−βxz)
+ 1− 1

1 + exp(βxz)

]
= q(z)

2

1 + exp(−βxz)
= 2q(z)FL(βxz).

A skew-symmetric distribution has the general form of f(z) = 2f0(z)G(βz) where f0 is a symmet-
ric probability distribution function and G(z) is a cumulative density function with symmetric
derivative G′ (Azzalini and Regoli, 2012). The symmetric derivative of G implies that we have
G(z) +G(−z) = 1 for all z. All the requirements for a skew-symmetric distribution are satisfied
for jx(z). Therefore, we could say that the one-dimensional proposal is simply drawn from the
distribution 2q(z)FL(βxz).

For a skew-symmetric distribution, the distribution will have a positive skew if β > 0, and a
negative skew for β < 0. So, by using βx := ∇ log π(x), we will be skewing the distribution
towards the gradient. This is how the gradient information is exploited for the Barker proposal.

Figure 5.2: Skew Symmetric Distributions
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If we re-examine the derivations above, we would notice that the choice of the logistic CDF
FL is not unique if we simply want to obtain a skew-symmetric distribution as our candidate
transition kernel. Any other cumulative density function with a symmetric derivative could, in
theory, work. However, the choice of FL is in fact not arbitrary, as we will see right below that
this is the unique choice if we would like our algorithm to have skew-symmetric proposals and
be a locally-balanced algorithm.

5.3.2 Balancing Function and Locally-Balanced Algorithms

For a Markov chain with transition kernel A that admits a density q, if it satisfies the detailed-
balanced equation with π, i.e.

π(x)q(x, y) = π(y)q(y, x)

for all x, y, then the Markov chain is π-reversible. If the chain is also aperiodic and ϕ-irreducible
(which is almost always the case for chains of MH algorithms), then the Markov chain will have π
as its equilibrium distribution. Thus, it is certainly desirable (and even required) for the MCMC
algorithm-generated Markov chains to satisfy the detailed balance equation. However, Q might
not always satisfy it, in which case we can remedy this problem by introducing a balancing
function g. This approach is first proposed in Zanella (2020) in the context of discrete state
space MCMC algorithms. The simplicity of this approach allows it to be easily transplanted to
the general state space cases.

Let t(x, y) := π(y)q(y, x)/[π(x)q(x, y)], and t(x, y) := 0 when π(x)q(x, y) = 0. If we further let
p(x, y) := q(x, y)g(t(x, y)), then in order for this p to satisfy the detailed balance equation, we
would have

π(x)p(x, y) = π(x)q(x, y)g(t(x, y))

= π(y)q(y, x)
π(x)q(x, y)

π(y)q(y, x)
g(t(x, y))

= π(y)q(y, x)t−1(x, y)g(t(x, y))

π(y)p(y, x) = π(y)q(y, x)g(t(y, x))

= π(y)q(y, x)g(1/t(x, y)),

so g must satisfies the condition: g(t) = tg(1/t) for all t. Of course, we set g(0) := 0.

For simplicity, we can assume q is symmetric, i.e. q(x, y) = q(y, x) for all x, y. In this case,
t(x, y) = π(y)/π(x), which means

p(x, y) = q(x, y)g(π(y)/π(x)).

We could make an approximation to the fraction π(y)/π(x) by using a Taylor series expansion
and keeping the first order term. This allows the balancing function to do its job of ensuring
the satisfaction of the detailed balance equation locally. This is why such algorithms are called
locally-balanced. The first order approximation in the one-dimensional case is as follows:

π(y)/π(x) = exp[log(π(y))− log(π(x))] ≈ exp[(y − x)∇ log π(x)].

Now, we can rewrite the kernel p using this approximation. By letting z := y − x and βx :=
∇ log π(x), we have

p(x, y) := px(z) = qx(z)g(e
zβx)/Z(x)
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where Z(x) is a normalising constant. We know from above that g(t) = tg(1/t). Also, as
we would want to enjoy all the benefits of a skew-symmetric distribution proposal, we would
want this p to be a skew-symmetric distribution, i.e. G(z) + G(−z) = 1. Combining these two
information, if we treat G(z) = g(ezβx), then we have

g(ezβx) + g(e−zβx) = 1

g(ezβx) + g(1/ezβx) = 1

g(ezβx) + e−zβxg(ezβx) = 1

g(ezβx) = 1/[1 + e−zβx ].

Thus, we have the following unique choice of g

g(et) =
1

1 + e−t
=

et

et + 1
,

and g(ezβx) = FL(βxz) where FL(t) = 1/[1 + e−t] as defined earlier. We are almost there. The
final thing we need to check is the normalising constant Z(x). We have∫ ∞

−∞
qx(z)g(e

zβx)dz =

∫ ∞

0

qx(z)g(e
zβx)dz +

∫ 0

−∞
qx(z)g(e

zβx)dz

=

∫ ∞

0

qx(z)g(e
zβx)dz +

∫ ∞

0

qx(z)g(e
−zβx)dz

=

∫ ∞

0

qx(z)[g(e
zβx) + g(e−zβx)]dz

=

∫ ∞

0

qx(z)dz = 1/2.

Thus, we have successfully derived px(z) = 2qx(z)FL(zβx), as desired.

An alternative derivation of the above results can be found in Hird et al. (2022).
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Chapter 6

The Barker Scheme

In Chapter 3, we have drawn the link between the unadjusted Langevin algorithm (ULA) and
the Euler-Maruyama scheme used in numerical solutions of SDEs. This link leads to the natural
question: can we obtain a new numerical scheme for SDEs by considering the unadjusted versions
of various MH algorithms?

The answer is no for RWM, as we would get a trivial Brownian motion in that case. However, the
answer is yes for the Barker proposal. In this chapter, we will look at the Barker scheme, which
is the unadjusted Barker proposal adapted into the framework of SDE numerical solutions. We
will also denote the same algorithm as the Unadjusted Barker. The two terms “Barker scheme”
and “Unadjusted Barker” are used interchangeably in this thesis. This scheme is not completely
developed yet, and many results about it are still partial. We will look at this scheme in the case
of numerically solving one-dimensional autonomous SDEs, and we have established a geometric
ergodicity result with several relatively strong conditions (which we intend to weaken in future
work). Several numerical studies are conducted and provided in this chapter.

6.1 Algorithm Setup

Consider the (one-dimensional) autonomous SDE

dYt = µ(Yt)dt+ σ(Yt)dWt, Y0 = y0. (6.1)

Here, {Wt}t≥0 is a standard Wiener process, µ : R→ R is a drift function and σ : R→ [0,∞) is
a volatility function.

Our numerical scheme with step-size δ > 0 is

X(n+1)δ = Xnδ + bn+1ξn+1

= Xnδ +
√
δbn+1σ(Xnδ)νn+1

X0 = x0 = y0

(6.2)

where ξn+1 ∼ N(0, σ2(Xnδ)δ), νn+1 ∼ N(0, 1), and

bn+1 =

{
+1 w.p. p(Xnδ, ξn+1)

−1 otherwise.
(6.3)
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Here, the probability p(Xnδ, ξn+1) and direction bn+1 inject skewness into the movement. The
probability is chosen to be defined as

p(Xnδ, ξn+1) =

[
1 + exp

(
−2ξn+1µ(Ynδ)

σ2(Ynδ)

)]−1

.

This choice of p is not unique, and we suspect any other probability function with similar prop-
erties can be used too.

6.2 Geometric Ergodicity of Unadjusted Barker

Theorem 6.1 (Original Result). Under the assumptions that σ(x) = C > 0 and limx→±∞ µ(x) =
∓∞, the Markov chain produced by the one-dimensional unadjusted Barker with parameter δ is
geometrically ergodic.

Proof. Without loss of generality, we let σ(x) =
√
2. It will become obvious that any arbitrary

positive constant will still make the proof hold. This specific choice is only there to simplify the
proof.

We need the drift condition and the minorisation condition to establish geometric ergodicity using
a combination of Theorem 2.12 and Proposition 2.13. We will show the minorisation condition
first.

Here, any compact set would be a small set C, and the minorisation measure ν is taken to be
the uniform distribution restricted to C, so we have ν(A) = Leb(A ∩ C)/Leb(C) for all A ∈ B,
where Leb is the Lebesgue measure on R (Williams, 1991).

Consider a small set C = [a, b] with a < b ∈ R, we have the transition density p(x, y) ≥ εν(y) for
any x ∈ C. This inequality holds trivially for y /∈ C as the ν(y) = 0 in this case. For x, y ∈ C, we
can then choose ε to be inf(x,y)∈C×C{p(x, y)} · (b− a), in which case we would have the desired
inequality. This value is a valid one as y is drawn from a distribution with support over the
whole of R. Thus, we have established the minorisation condition.

Next, we will establish the drift condition to show geometric ergodicity.

For the probability p for choosing the value of b, we have

p(x, ξ) =
1

1 + exp[−2ξµ(x)/σ2(x)]
=

1

1 + exp[−ξµ(x)]
.

This means that p(x, ξ) → 1 as ξµ → ∞, and p(x, ξ) → 0 as ξµ → −∞. Since we have
limx→±∞ µ(x) = ∓∞, the limiting behaviour of p depends on the sign of ξ. In this proof, we will
never consider the case where ξ = 0 as that is an event with probability zero. So, as x→∞, we
have p→ 1 for ξ < 0 and p→ 0 for ξ > 0. Similarly, as x→ −∞, we have p→ 1 for ξ > 0 and
p→ 0 for ξ < 0. Furthermore, notice that ξ =

√
δσ(x)ν where

√
δσ(x) > 0, we would then have

ξν > 0, i.e. they have the same sign.

Consider the choice of Lyapunov function V (x) = es|x| for some s > 0. We just need to establish
the inequality

lim sup
∥x∥→∞

PV (x)

V (x)
= lim sup

∥x∥→∞

∫
V (y)

V (x)
P (x, dy) < 1.
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Here we will only discuss the case where x→∞. The case where x→ −∞ follows naturally from
the proof of the first case via symmetry, thus is omitted here. As a consequence, we consider
x > 0 here. For the case of x→ −∞, we will set x < 0. Thus, we can replace lim sup with lim.

Write y = x+ bξ = x+ b
√
2δν. We have

PV (x)

V (x)
= E

[
V (y)

V (x)

]
= E[es|x+b

√
2δν|−s|x|]

= EνEb|ν [e
s|x+b

√
2δν|−s|x|]

= Eν [e
s|x+

√
2δν|−s|x|p(x, ξ) + es|x−

√
2δν|−s|x|(1− p(x, ξ))]

= Eν [e
s|x+

√
2δν|−s|x|p(x, ξ)]︸ ︷︷ ︸

A

+Eν [e
s|x−

√
2δν|−s|x|(1− p(x, ξ))]︸ ︷︷ ︸

B

We will look at each of the two terms in the last line separately, and bound their limits individ-
ually. We will denote the two terms as A and B for easy reference.

Using the dominated convergence theorem (Williams, 1991), we can exchange the limit and the
expectation. To see this, for A, we have

|es|x+
√
2δν|−s|x|p(x, ξ)| ≤ es|x+

√
2δν|−s|x|

≤ es|x|+s|
√
2δν|−s|x|

= e
√
2δs|ν|.

Furthermore, if we use ϕ to denote the probability distribution function of the standard normal
distribution, we have

Eν [e
√
2δs|ν|] =

∫ ∞

−∞
e
√
2δs|x|ϕ(x)dx

= 2

∫ ∞

0

e
√
2δs|x|ϕ(x)dx as the integrand is an even function

= 2

∫ ∞

0

e
√
2δsxϕ(x)dx ≤ 2

∫ ∞

−∞
e
√
2δsxϕ(x)dx

= 2Eν [e
√
2δsν ] = 2esδ

2

<∞,

where the last equality is due to the moment generating function of the standard normal distri-
bution.

We can provide a similar bound for B.

|es|x−
√
2δν|−s|x|[1− p(x, ξ)]| ≤ es|x−

√
2δν|−s|x|

≤ es|x|+s|
√
2δν|−s|x|

= e
√
2δs|ν|,

which makes this identical to the bound for A. Thus, we can exchange the limit and expectation
for both A and B.
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Now, let us bound limA. We have

lim
x→∞

Eν [e
s|x+

√
2δν|−s|x|p(x, ξ)]

= Eν [ lim
x→∞

es|x+
√
2δν|−s|x|p(x, ξ)]

= Eν [ lim
x→∞

es|x+
√
2δν|−s|x|p(x, ξ)|ν < 0]P(ν < 0)

+ Eν [ lim
x→∞

es|x+
√
2δν|−s|x|p(x, ξ)|ν > 0]P(ν > 0)

Intuitively speaking, the first term on the last line above denotes the inwards movement of
the algorithm (in the sense that the Lyapunov function decreases and we are moving towards
the minimum of V ), whereas the second term denotes the outwards movement. The inwards
movement is desirable while the outwards movement is not.

Notice that when ν > 0, we have s|x+
√
2δν| − s|x| =

√
2δsν and

lim
x→∞

es|x+
√
2δν|−s|x|p(x, ξ) = lim

x→∞

e
√
2δsν

1 + e−ξµ(x)
= 0

as ξ > 0 and limx→∞ µ(x) = −∞ by our condition. This means, the undesirable outwards
movement will occur with probability zero as x→∞ under our assumptions here.

So, we have

lim
x→∞

Eν [e
s|x+

√
2δν|−s|x|p(x, ξ)]

= Eν [ lim
x→∞

es|x+
√
2δν|−s|x|p(x, ξ)|ν < 0]P(ν < 0) + 0

≤ Eν [ lim
x→∞

es|x+
√
2δν|−s|x||ν < 0]P(ν < 0)

=

∫ 0

−∞
lim
x→∞

exp{s|x+
√
2δy| − s|x|}e

−y2/2

√
2π

dy.

For the integrand, for each fixed y, as x → ∞, we have limx→∞ exp{s|x +
√
2δy| − s|x|} =

exp{
√
2δsy}. So,

Eν [ lim
x→∞

es|x+
√
2δν|−s|x||ν < 0]P(ν < 0)

=

∫ 0

−∞
lim
x→∞

exp{s|x+
√
2δy| − s|x|}e

−y2/2

√
2π

dy

=
1√
2π

∫ 0

−∞
exp{

√
2δsy − y2/2}/

√
2πdy =

eδs
2

√
2π

∫ 0

−∞
exp{−(y −

√
2δs)2/2}dy

=
eδs

2

√
2π

∫ −
√
2δs

−∞
exp{−w2/2}dw =

eδs
2

√
2π

∫ ∞

√
2δs

exp{−w2/2}dw

<
eδs

2

√
2π

∫ ∞

√
2δs

w√
2δs

exp{−w2/2}dw =
eδs

2

√
2π

[
− 1√

2δs
e−w2/2

]∞
√
2δs

=
eδs

2

√
2π

e−δs2

√
2δs

=
1

2s
√
πδ

.
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Therefore, we have

lim
x→∞

Eν [e
s|x+

√
2δν|−s|x|p(x, ξ)] <

1

2s
√
πδ

.

Now we bound the limit of B. This bound will be derived in a similar manner as that of A.

lim
x→∞

Eν [e
s|x−

√
2δν|−s|x|(1− p(x, ξ))]

= Eν [ lim
x→∞

es|x−
√
2δν|−s|x|(1− p(x, ξ))]

= Eν [ lim
x→∞

es|x−
√
2δν|−s|x|(1− p(x, ξ))|ν > 0]P(ν > 0)

+ Eν [ lim
x→∞

es|x−
√
2δν|−s|x|(1− p(x, ξ))|ν < 0]P(ν < 0)

When ν < 0, we have

lim
x→∞

es|x−
√
2δν|−s|x|(1− p(x, ξ)) = lim

x→∞

e−
√
2δsν

1 + eξµ(x)
= 0

as ξ < 0 and limx→∞ µ(x) = −∞. So,

lim
x→∞

Eν [e
s|x−

√
2δν|−s|x|(1− p(x, ξ))]

= Eν [ lim
x→∞

es|x−
√
2δν|−s|x|(1− p(x, ξ))|ν > 0]P(ν > 0)

+ Eν [ lim
x→∞

es|x−
√
2δν|−s|x|(1− p(x, ξ))|ν < 0]P(ν < 0)

= Eν [ lim
x→∞

es|x−
√
2δν|−s|x|(1− p(x, ξ))|ν > 0]P(ν > 0)

≤ Eν [ lim
x→∞

es|x−
√
2δν|−s|x| | ν > 0]P(ν > 0)

=

∫ ∞

0

lim
x→∞

es|x−
√
2δy|−s|x|e−y2/2/

√
2πdy

=

∫ 0

−∞
lim
x→∞

es|x+
√
2δy|−s|x|e−y2/2/

√
2πdy

= Eν [ lim
x→∞

es|x+
√
2δν|−s|x||ν < 0]P(ν < 0) <

1

2s
√
πδ

,

where the last inequality follows from the result above.

Combining all these, we have

lim
x→∞

∫
V (y)

V (x)
P (x, dy) <

1

2s
√
πδ

+
1

2s
√
πδ

=
1

s
√
πδ

< 1

for any s > (πδ)−1/2 > 0. As s is arbitrary, the desired inequality would always hold for a
suitably chosen value of s.

Remark. Usually when we establish geometric ergodicity for MCMC generated chains, we only
want to know the speed of convergence from that result as the ergodicity part is easy to obtain.
However, in this case, the exact target distribution π is hard to find, therefore we could not use
the usual π-invariance + irreducible + aperiodic argument to establish ergodicity. Therefore, it is
quite hard to even obtain the existence of an equilibrium without proving this stronger geometric
ergodicity result.
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6.3 Numerical Studies

Two numerical studies are conducted in this section. The first study is on comparing the weak
convergence of the Barker scheme and that of the Euler-Maruyama scheme for basic SDEs. The
second study looks at the Unadjusted Barker (UB), which is just the Barker proposal without
the final Metropolis adjustment step. This study compares the performance of UB with several
popular MH algorithms for simulating from a relatively complex Poisson random effects model
that is frequently used in practice. The second study is closely related to the study conducted
in Section 6.3 of Livingstone and Zanella (2022).

6.3.1 Simulations for Basic SDEs

Experiments in this section compare the performance of the Euler-Maruyama scheme and the
Barker scheme while solving common SDEs numerically. The performance is assessed by con-
sidering the error, which is the absolute difference between the exact solution and the simulated
solution, over varying step sizes. If we let Xδ

T be the simulated solution at time T using step size
δ and let YT be the exact solution at time T , then if the numerical scheme converges weakly, we
have, for any suitable f ,

|E[f(Xδ
T )]− E[f(YT )]| ≤ Cδp

where C is a constant independent of δ and p is the weak convergence order (Platen and Kloeden,
1992). Taking log on both sides yield

log |E[f(Xδ
T )]− E[f(YT )]| ≤ logC + p log δ,

so log error will grow roughly linearly (since it is an inequality) with increasing step size.

The weak convergence order of the two numerical schemes has proved to be similar, which means
we expect a similar gradient of the two log error plots.

6.3.1.1 Set Up

The SDE of our consideration is the Ornstein-Uhlenbeck process of the form

dXt = θ(µ−Xt)dt+ σdWt,

where θ, µ, σ are constants. The choice of this process is because it is ergodic with a known exact
solution, which enables us to conduct the simulation smoothly.

The time T of the simulated path is 1000, with step sizes δ being one of 0.1, 0.2, 0.3, . . . , 1, and
the number of steps N is calculated to be ⌊T/δ⌋. The parameters of the process are µ = 0, θ = 1,
and σ =

√
2. The initial value of the SDE is X0 = 1.
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6.3.1.2 Log Error of Ornstein-Uhlenbeck

Figure 6.1: Log Error over Log Step Sizes

From the above diagram, we can notice an almost parallel relationship between the log error of
simulated solution from the Euler-Maruyama scheme and the Barker scheme. This indicates the
two schemes have similar weak convergence order, which is supported by our theory.

The code used for generating the above figure is included in the Appendix.

6.3.2 Poisson Random Effects Model

6.3.2.1 General Set Up

The following experiments compare the performance of ULA (the Euler-Maruyama scheme) and
UB (the Barker scheme) while sampling from a Poisson random effects model, similar to the
experiment in Section 6.3 of Livingstone and Zanella (2022).

The Poisson hierarchical model of consideration is of the following form:

yij |ηi
indep∼ Poi(eηi) j = 1, . . . , n

ηi|µ
indep∼ N(µ, 1) i = 1, . . . , 50

µ ∼ N(0, σ2
µ),

where we test the two schemes on the task of sampling from the resulting posterior distribution
p(µ, η1, . . . , η50|y) where y = (yij)ij is the observed data. We will then compare the two nu-
merical schemes by measuring the qualities of samples of parameter µ using mean squared error
(MSE) and (absolute) bias.

For our experiments using this model, we will assume the data-generating value of µ to be µ∗ = 5,
and sample the ηi from their prior distributions.
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Let N be the number of steps (after removing the burn-in) of the schemes, δ be the step size of
the scheme, and S be the set of possible step sizes we are running the scheme at. We also denote
K to be the number of iterations of the whole simulation.

For a fixed δ ∈ S, we let µj
i , where i = 1, 2, . . . , N and j = 1, 2, · · · ,K, to denote the i-th sample

of µ from the posterior for the j-th iteration, and µj
N := 1

N

∑N
i=1 µ

j
i to be the sample mean of µ

for the j-th iteration.

The MSE of the sample mean is MSE = 1
K

∑K
j=1(µ

j
N − µ∗)2, the (absolute) bias of the sample

mean is Bias = 1
K

∑K
j=1 |µ

j
N − µ∗|.

We would also consider the sample variance and the sample quantile, and then we will study

their respective MSEs. For sample variance of µ, it is Vµ
j

N := 1
N

∑N
i=1

(
µj
i − µj

N

)2

. The MSEs

are computed in a similar fashion as that of the sample mean.

6.3.2.2 MSE Comparison with Fixed Step Number

In this experiment, we let S = {0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05},N =
50000, and K = 100. Then, we will compare the MSE of the two schemes at different step sizes.

We consider two ways to initialise the schemes. The first way is to start, for µ, right from the
truth µ∗ = 5. This avoids the burn-in. The second way is to draw the starting point from
N(5, 102), which is a warm start. This then requires us to remove the burn-in period of the
simulated results. So, we run the schemes for 60000 steps and only take the last 50000 values.
The choice to cut off the first 10000 is made after looking at the plot of samples at various step
sizes and realising that all cases (approximately) are at stationarity after 10000 steps. Note that
ULA tends to take a longer time to mix than UB for the same step size.

Start From Truth

Figure 6.2: MSE Comparisons with Starting from Truth

Notice that ULA tends to behave badly for relatively large step sizes (0.035 onwards), while UB
has stable performance for all possible step sizes in this simulation. The two schemes perform
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similarly for small step sizes, and there is a decreasing trend of MSE as the step size increases
when the step sizes are tiny.

Warm Start

Figure 6.3: MSE Comparisons with Warm Start

We see very similar behaviours of the schemes as the previous simulation that starts from the
truth. In general, ULA has a much smaller range of possible step sizes for it to perform stably
than UB. This ‘robustness to tuning’ property of the UB is a key feature of the Barker proposal
algorithm too, as discussed in Livingstone and Zanella (2022).

6.3.2.3 Bias Comparison with Fixed Distance

In this experiment, we will consider the magnitude of error of the samples from the truth
when the scheme has been run for a fixed length T with varying step sizes. Naturally, there
would be a higher number of steps for smaller step sizes. Let T = 1000, K = 100, S =
{0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05}, and N = ⌊T/δ⌋ for δ ∈ S. Then, we
will compare the (absolute) bias of the two schemes at different step sizes.

Similar to the previous set of simulations, we consider two ways to initialise the schemes - start
from the truth and warm start. For the warm start, we draw the starting point from N(5, 32).
We set T = 1200 instead, and remove the first one-sixth of the samples for the burn-in.
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Start From Truth

The result for ULA aligns with the common strategy of using as small a step size as possible
while running this scheme. The result for UB seems slightly different at a first glance, as the
bias decreases at first and then stabilises. However, if we look at the actual values, there turns
out to be very few differences for various step sizes. The comparison plot of the two schemes
tells the same story as the comparison plots of previous simulations.

Warm Start

Figure 6.4: Bias Comparisons with Warm Start

The results are similar to the above case when we start from the truth. The unevenness of the
UB result is only due to the tiny magnitudes of the biasses. This result indicates that it would
be better to run the ULA with the smallest feasible step size, but this might not be the most
efficient strategy for UB. Small step sizes would mean the schemes take more steps (thus more
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computationally costly) to travel the same distance. This increase in computational costs is
taken usually in exchange for a reduced bias. For UB, the bias of the scheme remains low with
larger step sizes (and therefore less computationally costly), so it would not be efficient to pick
too small a step size.

6.3.2.4 MSE over Varying Step Size

The selection of step size (and parameter tuning in general) is a delicate matter in practice.
Here, we compare the MSE of the two schemes for various step sizes. As hinted in the previous
simulations, the range of reasonable step sizes for ULA is relatively small, compared to that of
the UB. Thus, we consider two different sets of step sizes for this simulation. Additionally, we
will only consider starting with a warm start.

For the UB simulation, we run the scheme with T = 55000 and remove the first 5000 samples
for burn-in. Let K = 100 and S = {0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3}. The starting point
for µ is drawn from N(5, 102).

For the ULA simulation, we run the scheme with T = 60000 and remove the first 10000 samples
for burn-in. Let K = 100 and S = {0.005, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040}. The
starting point for µ is drawn from N(5, 102).

(a) ULA (b) UB

Figure 6.5: MSE over Varying Step Sizes

The result for ULA indicates that we should use the smallest possible step size, while the result
for UB indicates that the choice of step size, within a sensible range, would all work very well.
Here, the some of step sizes used for UB are rather outrageous, yet the scheme remains to perform
well.

6.3.2.5 Variance and Quantile over Varying Step Sizes

In the previous experiment, we noticed that the MSE of the Barker proposal is extremely stable
even when the step size is large. The stability over step sizes might be too good to be true at
a first glance, and it is natural to suspect this is due to faulty codes rather than the algorithm
itself. Here, we conduct further experiments on UB under the same setup to illustrate that this
property is indeed valid.

Before looking at the variance and quantile of the estimation (of µ), we first take a look at the
plot of the samples of UB for step sizes 1, 3, and 5.
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(a) Step Size = 1 (b) Step Size = 3 (c) Step Size = 5

Figure 6.6: Sample Plots for Different Step Sizes

The red horizontal line represents the true value of the parameter. Notice that the scheme
managed to maintain sampling around the truth. As the step size increases, the fluctuation of
the sample values begins to increase even though it is still centering around the truth. This
reassures us that the scheme is correctly implemented.

Here, we consider the following two estimators - the variance of µ and the 90 percentile of µ.

(a) Sample Variance (b) Sample 90 Percentile

Figure 6.7: Variance and Quantile Varying Step Sizes

The above numerical results align with our observation from the sample path - as the step size
increases the fluctuation of the sample increases.
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Chapter 7

The Bouncy Barker

In this chapter, we will look at an alternative way to extend the one-dimensional Barker proposal
to n-dimension. The extension is motivated by the recent work of Bouchard-Côté et al. (2018)
where the movement of the samples is in the direction of the gradient, instead of moving in a
Zig-Zag fashion (Bierkens and Roberts, 2017) as combinations of e1, e2, . . . , en where ei is the
n-vector with 1 at i-th coordinate and 0 elsewhere. Because of this motivation, we use the term
‘bouncy’ for this algorithm. We will denote the Barker proposal with a ZigZag-like update when
the dimension is above one as Barker, and the alternative algorithm with a BPS-like update in
high-dimension as Bouncy Barker.

7.1 Set-Up

When the dimension is one, Barker and Bouncy Barker provide the same proposal.

Algorithm One-Dimensional Proposal of Barker

Require: Target distribution π, current position x, symmetric density q
1: Draw z ∼ q(·)
2:

b =

{
+1 with probability 1

1+exp(−z∇ log π(x))

−1 elsewise

3: y = x+ b · z

Algorithm One-Dimensional Proposal of Bouncy Barker

Require: Target distribution π, current position x, symmetric density q
1: Draw z ∼ q(·)
2:

z′ =

{
z with probability 1

1+exp(−z∇ log π(x))

z − 2 ⟨∇ log π(x),z⟩
∥∇ log π(x)∥2∇ log π(x) elsewise

3: y = x+ z′
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We can simplify the second step of Proposal of Bouncy Barker and get

z − 2
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x) = z − 2
∇ log π(x) · z
∥∇ log π(x)∥2

∇ log π(x) = z − 2z = −z,

which coincides with that of the second step of the Proposal of Barker.

The two proposals, however, behave differently when the dimension is greater than 1.

Algorithm n-Dimensional Proposal of Barker

Require: Target distribution π, current position x, symmetric density q
1: Draw z ∼ q(·)
2: for i = 1, 2, . . . , n do
3:

bi =

{
+1 with probability 1

1+exp(−zi∂i log π(x))

−1 elsewise

4: end for
5: y = x+ b · z

Algorithm n-Dimensional Proposal of Bouncy Barker

Require: Target distribution π, current position x, symmetric density q
1: Draw z ∼ q(·)
2:

z′ =

{
z with probability 1

1+exp(−zT∇ log π(x))

z − 2 ⟨∇ log π(x),z⟩
∥∇ log π(x)∥2∇ log π(x) elsewise

3: y = x+ z′

7.2 Candidate Transition Kernel Derivation

When we try to implement the above algorithms, we would require a Metropolis adjustment
step to decide if we will accept the proposal or not. The kernel of the proposal before passing
through the Metropolis adjustment is called the candidate transition kernel. The candidate
transition kernels of the proposals above are not symmetrical, so we could not cancel them out
like in the case of RWM.

The candidate transition kernels of both one-dimensional and n-dimensional Barker are known.
That of one-dimensional Bouncy Barker is known as well as it is the same as that of one-
dimensional Barker. It turns out that under mild conditions on the distribution q(·) in Step 1 of
the proposal, the candidate transition kernel of n-dimensional Bouncy Barker is very similar to
that of n-dimensional Barker as well.

Let jB1
(x, y) denote the candidate transition kernel of one-dimensional Barker (and Bouncy
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Barker). We have

jB1(x, y) =
q(y − x)

1 + exp(−(y − x)∇ log π(x))
+ q(x− y)

(
1− 1

1 + exp(−(x− y)∇ log π(x))

)
=

q(y − x)

1 + exp(−(y − x)∇ log π(x))
+ q(y − x)

(
exp(−(x− y)∇ log π(x))

1 + exp(−(x− y)∇ log π(x))

)
=

q(y − x)

1 + exp(−(y − x)∇ log π(x))
+ q(y − x)

(
1

exp(−(y − x)∇ log π(x)) + 1

)
=

2q(y − x)

1 + exp(−(y − x)∇ log π(x))
.

So, the Metropolis adjustment α(x, y) is

α(x, y) =
π(y)

π(x)
· jB1

(y, x)

jB1
(x, y)

=
π(y)

π(x)
· 2q(x− y)

1 + exp(−(x− y)∇ log π(y))
· 1 + exp(−(y − x)∇ log π(x))

2q(y − x)

=
π(y)

π(x)
· 1 + exp(−(y − x)∇ log π(x))

1 + exp(−(x− y)∇ log π(y))
.

This can be easily adapted for the case of n-dimensional Barker. The candidate transition kernel
and the Metropolis adjustment are

jBn(x, y) =
∏
i

2q(yi − xi)

1 + exp(−(yi − xi)∂i log π(x))
,

α(x, y) =
π(y)

π(x)
·
∏
i

1 + exp(−(yi − xi)∂i log π(x))

1 + exp(−(xi − yi)∂i log π(y))
.

To derive the candidate transition kernel of n-dimensional Bouncy Barker, we first define the
function bx(z) that flips z in Step 2 of the proposal when the current position is x, i.e.

bx(z) := z − 2
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x).

Lemma 7.1. bx is an involution, i.e. bx(bx(z)) = z for all z.

Proof.

bx(bx(z))

= z − 2
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x)− 2

〈
∇ log π(x),

(
z − 2 ⟨∇ log π(x),z⟩

∥∇ log π(x)∥2∇ log π(x)
)〉

∥∇ log π(x)∥2
∇ log π(x)

= z − 2
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x)− 2
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x)

+ 4
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

· ⟨∇ log π(x),∇ log π(x)⟩
∥∇ log π(x)∥2

∇ log π(x)

= z − 4
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x) + 4
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x) = z.
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Lemma 7.2. bx is an isometry, i.e. for any α, β ∈ Rn, we have ∥α− β∥ = ∥bx(α)− bx(β)∥.

Remark. An isometry f : X → Y with metrics dX and dY for X and Y respectively is a map
that satisfies dX(a, b) = dY (f(a), f(b)) for all a, b ∈ X. Here, we are in the special case of
X = Y = Rn with Euclidean metric.

Proof. We first notice that bx is linear, i.e. bx(α) + bx(β) = bx(α+ β), as

bx(α) + bx(β)

= α− 2
⟨∇ log π(x), α⟩
∥∇ log π(x)∥2

∇ log π(x) + β − 2
⟨∇ log π(x), β⟩
∥∇ log π(x)∥2

∇ log π(x)

= (α+ β)− 2
⟨∇ log π(x), α− β⟩
∥∇ log π(x)∥2

∇ log π(x)

= bx(α+ β).

Moreover, ∥bx(z)∥2 = ∥z∥2 for any z, as we have

⟨bx(z), bx(z)⟩

=

〈
z − 2

⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x), z − 2
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x)

〉
= ⟨z, z⟩ − 2⟨∇ log π(x), z⟩ 1

∥∇ log π(x)∥2
2⟨∇ log π(x), z⟩+ 4⟨∇ log π(x), z⟩2 1

∥∇ log π(x)∥2

= ⟨z, z⟩.

Combining these two, we have ∥bx(α)−bx(β)∥2 = ∥bx(α−β)∥2 = ∥α−β∥2 for any α, β, meaning
that bx is indeed an isometry.

So, if we let jBBn(x, y) denote the candidate transition kernel of n-dimensional Bouncy Barker,
we have

jBBn(x, y) =
q(y − x)

1 + exp(−(y − x)T∇ log π(x))
+ q(bx(y − x))

(
1− 1

1 + exp(−bx(y − x)T∇ log π(x))

)
=

q(y − x)

1 + exp(−(y − x)T∇ log π(x))
+ q(bx(y − x))

exp(−bx(y − x)T∇ log π(x))

1 + exp(−bx(y − x)T∇ log π(x))
.

For any distribution q that is spherically symmetric about the origin and isometry i, we
have q(z) = q(i(z)) for all z (Corollary of Theorem 4.1 of Fourdrinier et al. (2018)). This
means, if q is spherically symmetric about the origin (e.g. a centred Gaussian distribution
with covariance matrix being diagonal and having the same entries on the diagonal), we have
q(y − x) = q(bx(y − x)). This condition on q is not too outrageous in this scenario.

Additionally, we have bx(z)
T∇ log π(x) = −zT∇ log π(x). To see this, we have

bx(z)
T∇ log π(x)

= zT∇ log π(x)−
[
2
⟨∇ log π(x), z⟩
∥∇ log π(x)∥2

∇ log π(x)

]T
∇ log π(x)

= zT∇ log π(x)− 2zT∇ log π(x)

= −zT∇ log π(x),
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as ⟨a, b⟩ = aT b when a, b ∈ Rn.

The two results above allow us to simplify the candidate transition kernel jBBn
when q is spher-

ically symmetric about the origin, and we have

jBBn
(x, y) =

q(y − x)

1 + exp(−(y − x)T∇ log π(x))
+ q(bx(y − x))

exp(−bx(y − x)T∇ log π(x))

1 + exp(−bx(y − x)T∇ log π(x))

=
q(y − x)

1 + exp(−(y − x)T∇ log π(x))
+ q(y − x)

exp((y − x)T∇ log π(x))

1 + exp((y − x)T∇ log π(x))

=
q(y − x)

1 + exp(−(y − x)T∇ log π(x))
+ q(y − x)

1

exp(−(y − x)T∇ log π(x)) + 1

=
2q(y − x)

1 + exp(−(y − x)T∇ log π(x))
.

(7.1)

Consequently, the Metropolis adjustment of this proposal is

α(x, y) =
π(y)

π(x)
· jBBn(y, x)

jBBn
(x, y)

=
π(y)

π(x)
· 1 + exp(−(y − x)T∇ log π(x))

1 + exp(−(x− y)T∇ log π(y))
.

7.3 Spectral Gap Bound

Using the transition kernels derived, we can obtain an upper bound for the spectral gap of
the algorithm, which allows us to bound the variances of ergodic averages (Rosenthal, 2003).
Consider the space the functions

L2
0,1(π) = {f : Rd → R | Eπ[f ] = 0,Varπ[f ] = 1}.

A Markov chain of the Metropolis-Hastings type (i.e. generated by a Metropolis-Hastings algo-
rithm) has the π-invariant kernel P , constructed by

P (x, dy) := α(x, y)Q(x, dy) + r(x)δx(dy),

where Q is a candidate kernel with density q, α(x, y) is the standard acceptance rate given by

α(x, y) = min

(
1,

π(y)q(y, x)

π(x)q(x, y)

)
,

and r(x) := 1−
∫
α(x, y)Q(x, dy) is the average rejection probability.

The (right) spectral gap of a π-reversible Markov chain with transition kernel P is

Gap(P ) = inf
f∈L2

0,1(π)

1

2

∫
[f(y)− f(x)]2π(dx)P (x, dy).

The following result, established in the supplement of Livingstone and Zanella (2022) as Lemma
1.1, provides a way to obtain lower bounds on spectral gaps given point-wise lower bounds of
the candidate kernel.
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Lemma 7.3 (Lemma 1.1 in the supplement of Livingstone and Zanella (2022)). Consider two
Metropolis-Hastings kernels P1 and P2 with associated candidate kernels Q1(x, dy) = q1(x, y)dy
and Q2(x, dy) = q2(x, y)dy and common target distribution π. If there is a γ > 0 such that
q1(x, y) ≥ γq2(x, y) for all fixed x, y with x ̸= y, then

Gap(P1) ≥ γGap(P2).

With that, we could establish an upper bound on the bouncy Barker proposal. Let PR be the
candidate transition kernel of Random Walk Metropolis.

Proposition 7.4 (Original Result). Let P̌BB denote the bouncy Barker proposal on Rd using
Equation (7.1). Then, Gap(PR) ≥ Gap(P̌BB)/2.

Proof. Let qR(x, x+ z) = µσ(z) be the candidate transition density of Random Walk Metropo-
lis and µσ be spherically symmetric. The candidate density of bouncy Baker is, according to
Equation (7.1),

q̌BB(x, x+ z) =
2µσ(z)

1 + exp(−zT∇ log π(x))
= 2µσ(z)p̌(x, z)

where p̌(x, z) := 1/[1 + exp(−zT∇ log π(x))] ≤ 1. So, we have qR(x, x + z) ≤ q̌BB/2, and thus
Gap(PR) ≥ Gap(P̌BB)/2 using Lemma 7.3, as desired.

Remark. This result is identical to that of Proposition 5 in Livingstone and Zanella (2022)
since the modified Barker has the same proposal kernel as bouncy Barker.

Figure 7.1: Efficiency Comparison Over Dimensionality

To visualise this result, we have the above diagram on the efficiency of various algorithms over
dimensionality when we use spherically symmetric Gaussian as a proposal and an isotropic target.
This is based on Figure 3 of Livingstone and Zanella (2022). The light green line, representing
the bouncy Barker, is indeed similar to the Random Walk Metropolis, as established just now.

One possible explanation for the poor performance of bouncy Barker is that there are only two
options at each proposal stage, regardless of the dimensionality of the target distribution. The
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standard Barker, on the other hand, has 2d options at each proposal stage when the dimension of
the target is d. This larger number of options provides more flexible movements of the algorithm
dynamics, implying a higher efficiency.

7.4 Discussion

Notice that the bouncy Barker, as well as the version of the Barker proposal with the same
direction for each coordinate, has bad scaling over dimension property. Recall that the good
scaling property is a result of the algorithm being locally-balanced, it would then not be too
much of a stretch to believe that these two algorithms are no longer locally-balanced. And this
is the case.

In Vogrinc et al. (2022), the authors proposed this general structure for the unnormalised proposal
kernel for any first-order locally-balanced algorithm

P̃ (x, dy) =

n∏
i=1

g(e(yi−xi)∂i log π(x))µ

(
dyi − x

σ

)
.

In the case of Barker with g(t) = 1/(1+ t−1), it is clear from the above equation that coordinates
need to be independent. However, that requirement is not satisfied for the two failed attempts
of extending the dimensions.

MALA is, in fact, a locally-balanced algorithm too, with g(t) =
√
t. This balancing function

allows MALA to have good scaling properties even though the gradient information is not used
component-wise. The derivation goes as follows:

n∏
i=1

g(e(yi−xi)∂i log π(x)) =

n∏
i=1

e(yi−xi)∂i log π(x)/2

= exp
[∑

(yi − xi)∂i log π(x)/2
]

= exp

[
1

2
(y − x)⊤∇ log π(x)

]
.
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Chapter 8

Conclusion

The two main components of this thesis are on Langevin algorithms and Barker algorithms. We
mostly focus on the theoretical properties of such algorithms and occasionally conduct numerical
experiments to compare the performance of similar algorithms.

The part on Langevin algorithms revolves around the work of Dalalyan (2017), which established
an explicit converge rate bound under the condition that the target distribution is log-concave
and smooth. A natural extension would to be look at further work that improves on such bounds
and similar bounds for other algorithms. Another natural extension would be to look at further
work that weaken the condition on the target. There are more work conducted on the first
direction, and less so on the second.

The part on Barker proposals consists mostly of original work. We look at two ways to extend
the original Barker proposal introduced in Livingstone and Zanella (2022). The first way is to
remove the Metropolis adjustment in the algorithm and link it to a scheme for solving SDEs
numerically. This is the work of Chapter 6. The second way is to consider a seemingly new way
(which we prove in this thesis that it is in fact identical to an existing way) to extend the Barker
proposal to higher dimensions. This is the work of Chapter 7.

We intend to investigate both these two directions further in the future. For the work on the
Barker scheme, we intend to extend the geometric ergodicity result (Theorem 6.1) to the case of n-
dimension. We also aim to conduct more experiments on several complex models. Furthermore,
we hope to look at other aspects (other than geometric ergodicity) of this numerical scheme,
such as its weak convergence. For the work on Bouncy Barker, although the present extension is
proved to be unsatisfactory, we intend to explore other ways for us to exploit both the bouncy-
type moves as well as the skew-symmetric sampling of Barker proposal at the same time. This
could bring us new insights into the Barker proposal.
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Appendix

The following is the R code used to generate Figure 6.1.

euler_scheme <- function(mu ,sigma ,delta ,time , start){

# the Euler -Maruyama scheme for a (one -dim) autonomous SDE

# mu drift term of the SDE

# sigma volatility term of the SDE

# delta step size

# time time of the simulation T = N / delta

# start starting point

step <- floor(time * delta)

curr <- start

result <- c(curr)

for(i in 1:step){

new <- curr + delta * mu(curr) +

sigma(curr) * rnorm(1,mean=0,sd=sqrt(delta))

result <- c(result , new)

curr <- new

}

return(result)

}

barker_scheme <- function(mu, sigma , delta , prob , time , start ){

# the Barker scheme for a (one -dim) autonomous SDE

# mu drift term of the SDE

# sigma volatility term of the SDE

# delta step size

# prob probability function for injection of skewness

# time time of the simulation T = N / delta

# start starting point

step <- floor(time * delta)

curr <- start

result <- c(curr)

for(i in 1:step){

xi <- rnorm(1) * sqrt(delta) * sigma(curr)

b_prob <- prob(mu=mu ,sigma=sigma ,delta=delta ,curr=curr ,xi=xi)

if (runif(1) < b_prob){

b <- 1

}

else{
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b <- -1

}

new <- curr + b*xi

result <- c(result , new)

curr <- new

}

return(result)

}

prob_cauchy <- function(mu, sigma , delta , curr , xi){

# the Cauchy CDF probability function for injecting skewness

# mu drift term of the SDE

# sigma volatility term of the SDE

# delta step size

# curr current position

if(sigma(curr) == 0){

exponential <- "inf"

prob <- 1

}

else{

exp_power <- (2 * xi * mu(curr) / sigma(curr) )/ sigma(curr)

prob <- 1/(1+exp(-exp_power ))

}

return(prob)

}

# Ornstein -Uhlenbeck

# dX_t = theta(mu - X_t) dt + sigma dW_t

ornstein_uhlenbeck_drift <- function(curr){

mu <- 0

theta <- 1

return(theta *(mu-curr))

}

ornstein_uhlenbeck_volatility <- function(curr){

sigma <- sqrt(2)

return(sigma)

}

mu <- 0

theta <- 1

sigma <- sqrt(2)

time <- 1000

delta_vec <- seq(0.01,0.1,0.01)

start <- 1

iter <- 10000

yt_barker <- c()

yt_euler <- c()

for (i in 1:iter){

for (delta in delta_vec){

barker_sample <- barker_scheme(mu = ornstein_uhlenbeck_drift ,

sigma = ornstein_uhlenbeck_volatility , delta = delta ,
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prob = prob_cauchy , time = time , start = start)

yt_barker <- c(yt_barker , barker_sample[length(barker_sample )])

euler_sample <- euler_scheme(mu = ornstein_uhlenbeck_drift ,

sigma = ornstein_uhlenbeck_volatility , delta = delta ,

time = time , start = start)

yt_euler <- c(yt_euler , euler_sample[length(euler_sample )])

}

}

final_yt_barker <- t(matrix(yt_barker ,ncol=iter))

final_yt_euler <- t(matrix(yt_euler ,ncol=iter))

expected_solution <- start*exp(-theta * time) + mu * (1- exp(-theta*time))

f <- function(x){

return(x^2)

}

log_error_barker <- log(colMeans(f(final_yt_barker )) - f(expected_solution ))

log_error_euler <- log(colMeans(f(final_yt_euler)) - f(expected_solution ))

# generate the plot

plot(log_error_barker ,col="red",type="b",

ylim=c(min(log_error_barker ,log_error_euler),

max(log_error_barker ,log_error_euler)),xlab="log␣Step␣Size",

ylab="log␣f(error)",xaxt="n",main="f(x)␣=␣x^2",log = ’x’)

points(log_error_euler ,col="black",type="b",log=’x’)

axis(1, at=1:10,labels=delta_vec)

legend("topleft", legend=c("Euler","Barker"), col=c("black", "red"),

lty=c(1,1), cex=1)
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