
Chapter 1

Temporal Gaussian Processes as
Stochastic Differential Equations

Consider a Gaussian process (GP) {f(t)}t with mean zero and covariance k. It is defined on
one-dimensional R, and the input should be intuitively understood as time (rather than space).
We further assume our temporal GP is equipped with a stationary kernel k, i.e. we can write
k(t, t′) = k(τ) for τ := t− t′.

Here, we will introduce and derive the stochastic differential equation (SDE) representation of such
stationary temporal GPs. The rest of the chapter will go as follows: in Section 1.1, we describe
the SDE needed for reformulation and present its solution; in Section 1.2, we will investigate the
spectrum of the SDE solution; in Section 1.3, we will leverage the previous derivations and to find
the corresponding SDE formulation of a GP with zero mean and Matern 3/2 kernel.

The material of this chapter references heavily on Solin (2016).

1.1 Stochastic Differential Equations and Their Solutions

Consider the following equation

a0f(t) + a1
d

dt
f(t) + a2

d2

dt2
f(t) + · · ·+ am

dm

dtm
f(t) = w(t) (1)

where w(t) is a white noise process and a0, a1, . . . , am are constants. Note that by the definition
of a white noise process, w(t) is a Gaussian process with mean zero and covariance function

kw(t, t
′) = σ2δ(t− t′),

and it can be viewed as the derivative in time of a Brownian motion {Bt}t.

The solution f of Equation (1) is a Gaussian process. Recall that GPs are closed under linear
operations, we notice the operators applied to f on the left-hand side are all linear, whilst the
right-hand side of the equation is a GP.

We will reformulate Equation (1) in matrix forms for the ease of subsequent exposition. We define

f(t) =
[
f(t) d

dtf(t) · · · dm

dtm f(t)
]T

and w(t) =
[
w0(t) · · · wm−1(t) w(t)

]T
,

so we have f(t) = Hf(t) and w(t) = L ·w(t) for

H =
[
1 0 · · · 0

]
and L =

[
0 · · · 0 1

]
.
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Subsequently, we can rewrite Equation (1) as

d

dt
f(t) =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

...
0 1 0

−a0 · · · · · · −am

f(t) +L ·w(t).

If we define F as the big matrix on the left to f(t) on the right-hand side, we have

d

dt
f(t) = Ff(t) +L ·w(t). (2)

Notice that both F and L are matrices with constant entries. We can solve the SDE (2) explicitly.
Assuming we have the initial condition f(t′).

First, we rewrite the equation into

d

dt
f(t)− Ff(t) = L ·w(t)

and apply an integrating factor with matrix exponential to it, yielding

d

dt
exp[−F (t− t′)]f(t)− exp[−F (t− t′)]Ff(t) = exp[−F (t− t′)]L ·w(t).

Defining
g(t) := exp[−F (t− t′)]f(t)

and applying Ito lemma to it, we would obtain

dg(t) =
d

dt
exp[−F (t− t′)]f(t)− exp[−F (t− t′)]Ff(t),

which is precisely the left-hand side of the rearranged equation and that yields

dg(t) = exp[−F (t− t′)]L ·w(t).

Integrating the above equation over t from t′ to t would give us

g(t)− g(t′) =

∫ t

t′
exp[−F (s− t′)]LdBs

exp[−F (t− t′)]f(t) = exp[−F (t′ − t′)]f(t′) +

∫ t

t′
exp[−F (s− t′)]LdBs

f(t) = exp[F (t− t′)]f(t′) + exp[F (t− t′)]

∫ t

t′
exp[−F (s− t′)]LdBs

f(t) = exp[F (t− t′)]f(t′) +

∫ t

t′
exp[F (t− s)]LdBs.

By the basics of Ito integral, we can actually view f(t)|f(t′) as a Gaussian random variable

f(t)|f(t′) ∼ N (At, Qt)

At = exp[F (t− t′)]f(t′)

Qt =

∫ t

t′
exp[F (t− s)]LΣLT exp[F T (t− s)]ds

(3)

where Σ is the spectral density matrix of {w(t)} and the covariance Qt is obtained by computing
E[f(t)f(t)T ]. To extract f(t) would only rely on f(t) = Hf(t).
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1.2 Stationary State Solution and Its Spectral Properties

The solution to Equation (2) we obtained as Equation (3) involves a Qt covariance matrix com-
puted via an integral. This integral induces computation costs that could be avoided in our case,
which we will illustrate below.

First, we recall the white noise process w(t) and consider the Fourier transform of its kernel to
obtain its spectral density Σ:

k̂(ξ) =

∫ ∞

−∞
k(τ) exp[−2πiξτ ]dτ =

∫ ∞

−∞
σ2δ(τ) exp[−2πiξτ ]dτ = σ2 · 1 · 1 = σ2.

Next, define Pt to be the covariance of f(t). We have

d

dt
Pt =

d

dt
E
[
f(t)f(t)T

]
.

Using the Ito lemma, we have (ignoring (t) in the notations for simplicity)

d
[
ffT

]
= (df)fT + f(df)T + (df)(df)T

df = Ffdt+LdBt

E
[
(df)fT

]
= FE[ffT ]dt = FPtdt

E
[
f(df)T

]
= E[ffT ]F dt = PtF

T dt

E
[
(df)T (df)T

]
= LΣLT

using repeatedly the Ito formula in the derivations, so

d

dt
Pt = FPt + PtF

T +LΣLT .

For the steady state f∞ with its covariance P∞, we have

FP∞ + P∞F T +LΣLT = 0

which can be used to find P∞ given F ,L,Σ.

Subsequently, using

f(t) = exp[F (t− t′)]f(t′) +

∫ t

t′
exp[F (t− s)]LdBs,

we have
Pt = E

[
f(t)f(t)T

]
= exp[F (t− t′)]Pt′ exp[F

T (t− t′)] +Qt.

In the case where t > t′ and both are times beyond stationarity, we have P∞ = Pt = Pt′ and

Qt = P∞ −AtP∞AT
t

using At = exp[F (t− t′)]f(t′).

Therefore, if we can assume the solution GP f is stationary (e.g. its kernel is stationary), we can
compute P∞ using

FP∞ + P∞F T +LΣLT = 0

and find

Qt = P∞ −AtP∞AT
t

for any t.

The final thing that we will explore in this section is the spectral density Sf (ω) of the f(t).
Revealing the spectral density of the solution f(t) (which gives us f via H) will allow us to find
the suitable F and Σ for the SDE representation of stationary temporal GPs with given kernels.
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Applying the Fourier transform to both sides of Equation (2) gives

d

dt
f(t) = Ff(t) +Lw(t)

d

dω
f̂(ω) = F f̂(ω) +Lŵ(ω)

iωf̂(ω) = F f̂(ω) +Lŵ(ω)

f̂(ω) = (iωI − F )−1Lŵ(ω).

The spectral density Sf (ω) of f is therefore provided by

Sf (ω) = E[f̂(t)f̂(t)T ]

= E[Hf̂(ω)f̂(ω)∗H∗]

= H[(iωI − F )−1L]E[ŵ(ω)ŵ(ω)∗][(iωI − F )−1L]∗H∗

= H[(iωI − F )−1L]Sw(ω)[(iωI − F )−1L]∗H∗

= H[(iωI − F )−1L]Σ[(iωI − F )−1L]∗H∗

where ∗ is the complex conjugate operation and Sw(ω) is the spectral density of white noise w
which is a constant matrix Σ as stated earlier.

1.3 Spectrum of Stationary GP Kernels - Matern 3/2

As alluded to earlier, by investigating the spectrum, we can choose constant matrices F , Σ, P0

such that the solution to SDE (2) is a stationary temporal GP of known kernels.

We will derive the computation for Matern 3/2 kernel

k(τ) = σ2

(
1 +

√
3

l
|τ |

)
exp

[
−
√
3

2
|τ |

]
which we often simplify as

k(τ) = σ2 (1 + |τ |λ) exp [−λ|τ |]

by defining λ :=
√
3/l. The other kernels’ computation can be conducted similarly, thus omitted

here. One can find a list of such results in Chapter 3.3 of Solin (2016).

Firstly, the spectral density of the Matern 3/2 kernel is

Sk(ω) =
12

√
3σ2/l3

(λ2 + ω2)
2 .

The rest of the section will be devoted to the computations for figuring out suitable F ,Σ, P0 such
that Sf = Sk.

Consider the function
G(s) = H(sI − F )−1L

that gives
Sf (ω) = G(iω)ΣG(iω)∗.

We would wish to find a G(s) of the form

G(s) =
1

s2 + a1s+ a0
,

that corresponds to

F =

[
0 1

−a0 −a1

]
, L =

[
0
1

]
, H =

[
1 0

]
.
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Such G is called the companion form. In the case of Matern 3/2 Sk, we would set

a0 = λ2, a1 = 2λ.

Substituting the values and computing Gs using H(sI − F )−1L would verify the correctness of
this choice.

Additionally, we have

12
√
3σ2/l3

(λ2 + ω2)
2 = Sk(ω) = Sf (ω) = G(iω)ΣG(iω)∗ =

Σ

(λ2 + ω2)2
,

thus Σ = 12
√
3σ2/l3 = 4λ3σ2.

It can also be solved, by appealing to

FP∞ + P∞F T +LΣLT = 0,

the steady state covariance function P∞ = P0 is

P∞ =

[
σ2 0
0 λ2σ2

]
.

Therefore, we have

F =

[
0 1

−λ2 −2λ

]
, L =

[
0
1

]
, H =

[
1 0

]
, Σ = 4λ3σ2, P∞ =

[
σ2 0
0 λ2σ2

]
such that the solution f(t) = Hf(t) of SDE

d

dt
f(t) = Ff(t) +L ·w(t).

are zero-mean GPs with Matern 3/2 kernels.
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Chapter 2

Temporal Gaussian Process
Regression as State Space
Smoothing

After formulating a temporal GP as an SDE in Chapter 1, we will consider how one can view
the task of GP regression as a smoothing of a state space model (SSM). In the case where the
observations are with homoscedastic Gaussian noise, the state space model produced is a linear
Gaussian model and can be filtered and smoothed using the Kalman filter and smoother.

2.1 Gaussian Process Regression

Recall from Chapter 1 that we have successfully derived the SDE formulation of temporal GPs
with certain kernel choices. Gaussian process models are often used to do regression: we wish to
learn an unknown function f using location-value noisy observation pairs D = {(xi, yi)}mi=1. We
would often set a Gaussian process prior p(f) on f and conduct a Bayesian update of the form

p(f |D) ∝ p(f)× p(D|f)

where p(D|f) is the likelihood of observing the data given the model. Often, we would further
assume the observations are obtained as

yi = f(xi) + εi

for all i where ε1, . . . , εm ∼ N(0, σ2
obs), making the likelihood term

p(D|f) =
n∏

i=1

ϕ

(
yi − f(xi)

σobs

)
for standard normal density ϕ.

Under such a setup (observation with Gaussian noise), the Gaussian process regression admits
conjugacy, making the update tractable.

We rewrite the observations D = {(xi, yi)}mi=1 for xi, yi ∈ R as D = {X, y} where X, y ∈ Rm and

y = f(X) + ε, for ε ∼ Nm(0, σ2Im).

Under our modelling assumptions, we could write down the (log) likelihood of the m observations
y under our GP prior f ∼ GP(µ, k). Since y = f(X) + ξ, we have

y|X ∼ Nm

(
µ(X), k(X,X) + σ2Im

)
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paramerised by θ (e.g. observation noise σ, lengthscale and variance of the kernel k) which gives
us the following log likelihood

log p(y|X) = −m

2
log(2π)− log |k(X,X)+σ2Im| − 1

2
(y − µ(X))

T
(k(X,X)+σ2Im)−1 (y − µ(X))

that we maximise w.r.t. θ to obtain the maximum likelihood estimators of the (hyper)parameters.

Next, conditional on these observations, we wish to know the distributions of the GP at test points
X∗ ∈ Rn, i.e. the conditional distribution y∗ = f(X∗) |D. This can be achieved by first modelling
y∗ and y jointly, then conditioning on y. Using the conditional distribution formula of Section
A.2, we denote for simplicity the Gram matrices

K = k(X,X), K∗ = k(X,X∗), K∗∗ = k(X∗, X∗),

which gives us

y∗ |X∗,D, σ2 ∼ Nn(µy∗|D,Ky∗|D),

µy∗|D = µ(X) +KT
∗ (K + σ2In)

−1y,

Ky∗|D = K∗∗ −KT
∗ (K + σ2In)

−1K∗.

In the common scenario where we assume µ = 0, we further have the following GP predictive
distribution

y∗ |X∗,D, σ2 ∼ Nn(µy∗|D,Ky∗|D),

µy∗|D = KT
∗ (K + σ2In)

−1y,

Ky∗|D = K∗∗ −KT
∗ (K + σ2In)

−1K∗.

2.2 State Space Model

Consider two sets of coupled stochastic process {Xt}t and {Yt}t where the true process of interest
is driven by {Xt}t while we only have access to it via observation process {Yt}t. We assume that
both processes are Markovian in the sense that

Xt | (x0:t−1, y1:t−1) ∼ P (·|xt−1)

Yt | (x0:t, y1:t−1) ∼ g(·|xt)

using the short-hand notation xa:b := (xa, xa+1, . . . , xb) with a < b and a, b ∈ Z.

We can, graphically, portray the above process like below.

· · · Xt−1 Xt Xt+1 · · · (signal)

· · · Yt−1 Yt Yt+1 · · · (observation)

P P P P

g g g

Such a model si often called a hidden Markov model (HMM) or state space model (SSM).

There are four main tasks associated with a state space model like the one above: predicting,
filtering, smoothing, and parameter estimation.

The transition kernel P and the conditional distribution g usually depend on some parameters,
and we denote the full vector of parameters by θ. The parameter dependency would not be made
explicit most of the time to make the notation clean. In a Bayesian framework, we can think
about an SSM as a Bayesian inference problem: π0 is the prior distribution of the signal process,
and as we make further observations y1:t, we update our belief. The likelihood functions, denoted
in general by p, are

p(x0:t) = π0(x0)

t∏
i=1

P (xi|xi−1) p(y1:t|x0:t) =

t∏
i=1

g(yi|xi).
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We can use the Bayes formula to get the posterior distribution of the signal process X0:t after
observing y1:t, which is given by

p(x0:t|y1:t) =
p(x0:t, y1:t)

p(y1:t)
=

p(x0:t)p(y1:t|x0:t)∫
p(y1:t|x0:t)dx0:t

.

The distribution p(x0:t|y1:t) above is called the smoothing distribution, and the task of finding
it is called (complete) smoothing. Roughly speaking, this is the task of learning the distribution
of the full trajectory of the signal process given all the available data.

Sometimes, we may be only interested in knowing the distribution of the current state in the signal
process instead of the whole trajectory. We wish to find the conditional distribution of Xt given
observations y1:t, which is

p(xt|y1:t) =
p(xt, y1:t)

p(y1:t)

=
g(yt|xt)p(xt|y1:t−1)p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)

=
g(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

= g(yt|xt)

∫
P (xt|xt−1)p(xt−1|y1:t−1)dxt−1∫

g(yt|xt)p(xt|y1:t−1)dxt
.

This distribution p(xt|y1:t) is called the filtering distribution, and the task of finding it is called
filtering. Notice that on the right-hand side of the above equation, the integral in the denominator
replies on knowing p(xt|y1:t−1), which is the full integral in the numerator - which depends on
p(xt−1|y1:t−1). This indicates a highly iterative structure of the filtering distribution - the filtering
distribution at time t depends on that at time t − 1, which depends on that at time t − 2,
etc. Furthermore, the numerator of the right-hand side of the equation above is the prediction
distribution p(xt|y1:t−1), which is essentially making the prediction of the next state in the signal
distribution given all observations. The denominator p(y1:t) of the right-hand side of the equation
above is the likelihood of observing the data, which depends on the parameters θ. The likelihood
would allow us to estimate θ, say using maximum likelihood estimation.

Therefore, we have described all four main tasks associated with an HMM. They are summarised
below.

• (predict) Find p(xt|y1:t−1)
• (filter) Find p(xt|y1:t)
• (smooth) Find p(x0:t|y1:t)
• (parameter estimation) Estimate θ using likelihood p(y1:t)

2.3 Kalman Filter and Smoothing

Consider the following system of equations

Xt = ΦXt−1 + ηt, ηt ∼ N(0, B)

Yt = HXt + ϵt, ϵt ∼ N(0, R)
(4)

where Φ, H,B,R are matrices that we assume to know beforehand. It can be observed that this
is a special case of a state space model where P, g are chosen to be Gaussian distribution with the
right mean and variance. The system described by Equation (4) is often called a linear Gaussian
model since everything is linear and Gaussian.

Notice that the first equation of (4) is closely linked to the SDE that we discussed heavily in
Chapter 1, such as that of Equations (2) and (3), by thinking Xt as GP f ’s value at time t. The
second equation of (4) is also linked to a GP as H can be the operator that extracts f from vector
f while ε is the observation noise.

10



In this special case, the four tasks outlined in Section 2.2 (predicting, filtering, smoothing, and
parameter estimation) can be conducted in closed form due to the nice properties of Gaussians.

We define the filtering distribution Xt|y1:t ∼ N(µ̃t, Σ̃t) where µ̃t, Σ̃t are to be found, and the
predicting distribution Xt|y1:t−1 ∼ N(µt,Σt) where µt,Σt are to be found. The Gaussianity
follows from the closeness of Gaussians under additions and multiplications.

From Equation (4), we know

Xt|x0:t−1, y1:t−1 = Φxt−1 + ηt, ηt ∼ N(0, B).

Similarly, using the model setup, we know

Yt|y1:t−1, x0:t = Hxt + εt, εt ∼ N(0, R).

So, conditional on yt−1 (the other history can be omitted due to the Markovian structure of the
model), we have [

Xt

Yt

]
|yt−1 ∼ N

([
µt

Hµt

]
,

[
Σt ΣtH

T

HΣT
t HΣtH

T +R

])
using the definition that Xt|yt−1 ∼ N(µt,Σt) where µt,Σt are yet to be determined. Taking the
marginal of the above distribution over Yt = yt gives, using the results of marginal multivariate
Gaussians of Section A.2, the filtering distribution

Xt|y1:t ∼ N(µ̃t, Σ̃t)

µ̃t = µt +ΣtH
T (HΣtH

T +R)−1(yt −Hµt) =: µt +Kt(yt −Hµt)

Σ̃t = Σt − ΣtH
T (HΣtH

T +R)−1HΣt =: Σt −KtHΣt

Kt := ΣtH
T (HΣtH

T +R)−1

where Kt is often called the Kalman gain. Subsequently, we can use the propagation of Xt+1

from Xt to derive the prediction distribution as

Xt+1|y1:t ∼ N(µt+1,Σt+1)

µt+1 = Φµ̃t

Σt+1 = ΦΣ̃tΦ
T +B.

Finally, we will derive the (Rauch-Tung-Striebel, RTS) smoothing distribution Xt|y1:T . Firstly,
we have [

Xt

Xt+1

]
|y1:t ∼ N

([
µ̃t

µt+1

]
,

[
Σ̃t Σ̃tΦ

T

ΦΣ̃T
t Σt+1

])
and conditioning on Xt+1, using formulas in Section A.2, gives

Xt|Xt+1, y1:t ∼ N
(
µ̃t + Ct(Xt+1 − µt+1), Σ̃t − CtΣt+1C

T
t

)
Ct := Σ̃tΦ

TΣ−1
t+1.

Next, we consider the smoothing distribution Xt|y1:T ∼ N(µ̂t, Σ̂t) which can be obtained itera-
tively backwards. Notice that

XT |y1:T ∼ N(µ̂T , Σ̂T ) = N(µ̃T , Σ̃T ),

and subsequently, we have

p(XT−1|y1:T ) =
∫

p(XT−1|xT , y1:T )p(xT |y1:T )dxT

XT−1|y1:T ∼ N
(
µ̃T−1 + CT−1(µ̂T − µT ), Σ̃T−1 − CT−1ΣTC

T
T−1 + CT−1Σ̂tC

T
T−1

)
CT−1 := Σ̃T−1Φ

TΣ−1
T .

11



Therefore, we can succinctly write

XT−1|y1:T ∼ N
(
µ̂T−1, Σ̂T−1

)
µ̂T−1 = µ̃T−1 + CT−1(µ̂T − µT )

Σ̂T−1 = Σ̃T−1 + CT−1(Σ̂t − ΣT )C
T
T−1

CT−1 := Σ̃T−1Φ
TΣ−1

T .

and for general t, the smoothing distribution is given by

Xt|y1:T ∼ N
(
µ̂t, Σ̂t

)
µ̂t = µ̃t + Ct(µ̂t+1 − µt+1)

Σ̂t = Σ̃t + Ct(Σ̂t+1 − Σt+1)C
T
t

Ct := Σ̃tΦ
TΣ−1

t+1.

and Ct is often called the smoother gain.

One can extend the above formulas easily to accommodate for unseen time test points. When
the test point t∗ is after all the observed data, we will simply propagate accordingly from the
last observation’s filtered/smoothed distribution. If the test point is between two consecutive
observations, i.e. tk ≤ t∗ ≤ tk+1, we will filter it by propagating from µtk and add the adjusted
Kalman gain from ytk . A similar setup can be used to compute the smoothing distribution.

In the process of Kalman filtering, we have the observation distribution

Yt|y1:t−1 ∼ N(Hµt, HΣtH
T +R)

which has the log-likelihood

l(yt) = const.− 1

2
log det[HΣtH

T +R]− 1

2
(yt −Hµt)

T [HΣtH
T +R]−1(yt −Hµt).

Thus, let θ denote all the unknown parameters of the model, the log-likelihood of our observations
y1:T could be computed as

l(θ; y1:T ) = const. +

T∑
t=1

[
−1

2
log det[HΣtH

T +R]− 1

2
(yt −Hµt)

T [HΣtH
T +R]−1(yt −Hµt)

]
.

2.4 GP Regression as Kalman Smoothing

Figure 1: Gaussian Process Regression via Kalman Smoothing
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Figure 2: Gaussian Process Regression Comparison: Kalman Smoothing v.s. Conjugacy

Figure 3: Computational Time of Gaussian Process Regression Comparison: Kalman Smoothing
v.s. Conjugacy
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